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Abstract
Close formation flight of swarmunmanned aerial vehicles (UAVs) has drawnmuch attention from scholars due to its significant
importance inmany aspects. In this paper,we focus on an advanced controller design for swarmUAVclose formation based on a
novel bio-inspired algorithm, i.e., metric-distance brain storm optimization (MDBSO). The proposedmethod utilizes the brain
storm optimization (BSO) which has been extensively adopted in complicated systems with great performances and modifies
its basic operators to formulate the formation flight controller design. The original clustering operator in BSO is replaced
by a fresh clustering method based on metric distances, while the individual updating operator utilizes Lévy distribution to
extend search steps to fit into the metric searching regions. Then the proposed algorithm is applied to optimize the benchmark
controller in swarmUAV close formation to enhance the tracking performances under complicated circumstances. Simulation
results demonstrate that our approach is more superior in stable configuration of swarm UAV close formations by comparing
with several generic methods.

Keywords Close formation flight · Brain storm optimization · Metric distance · Clustering operation

1 Introduction

It’s well known that swarm unmanned aerial vehicles (UAVs)
can leverage the capabilities and performances in complex
missions via cooperation and formations among different
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platforms to maximize the team benefits [1]. Sometimes fly-
ing in close formation like geese or pigeon flocks may even
minify the fuel cost of the whole team and enhance the abil-
ities of self-protection through confusing the enemies once
the swarm falls into a trap. Recent studies have shown that
birds in close formation are endowed with the capability to
perceive the up-wash vortex generated by leaders and prone
to reduce their drag forces to expand the flight range. The
trajectory observation data of bird flocks corroborated that
following birds could experience 11.4–14.5% energy savings
when flying in the up-wash vortex of preceding leaders and
forming tight formation [2]. Enlightened by this spectacular
natural phenomenon, many researchers have concentrated on
the control and realization of close formation of aircrafts [3–
8]. In [3], real flight tests have been conducted to analyze
the benefits of close formation on Dryden F/A-18 platforms
under certain conditions. In terms of flight control, Proud et
al. designed an autopilot for the following aircrafts to main-
tain the geometry of close formation where the additional
up-wash coupling aerodynamics of wing followers was con-
sidered [4]. This controller was based on feedback errors
and proportional control scheme which has been considered
as a classical templet due to its simple structure. After that,
other advanced methods are continuously presented for UAV
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close formation flight including the robust techniques [7] and
artificial potential functions [8] etc. The main objectives are
either improving the position tracking precision of following
UAV to gather a perfect up-wash effect or keeping stability
of formation configuration for safe flight.

Recently swarm intelligence (SI) algorithms especially
the bio-inspired optimizations have caught sustained atten-
tions from enormous researchers in various fields and indus-
tries. Typical instances include Particle Swarm Optimization
(PSO) [9], Pigeon-inspired Optimization (PIO) [10–12] and
Differential Evolution (DE) [13] etc. The diversity of swarm
intelligence optimizers has reinforced the freedom of choice
for the users in different research domains and thus extended
applications in multicolored industries. During this period,
a novel bio-inspired algorithm named Brain Storm Opti-
mization (BSO) [14–21] which is first proposed by Shi has
been widely used to cope with multiple research problems
including complex multi-objective engineering problems.
Theoretical analyses such as the convergence proof [15],
parameter investigation [16] and population diversity [17]
have also been developed recently. However, there are still
spaces forBSO to be improved and variousmodified versions
spring up in succession. For example, Qiu et al. improved the
original BSO via a brand-new clustering standard for reced-
ing horizon control of multiple UAV formation flight [18].

In terms of the BSO structure, the clustering operation
is absolutely essential for the whole process and issues on
increasing the clustering efficiency are always discussed in
recent literatures. Cheng et al. [21] demonstrated that the
cluster information in BSO reveals the distribution of solu-
tions, which could be utilized to reveal the landscapes and
other proprieties of optimization problems. However the nor-
mal clustering operators in BSO and most modified versions
are always based on the topological-distance framework [22–
26] which indicates that the individuals always interact with
neighbors in compact and dense clusters. The traditional
topological distance-based clusteringmethodmayeasily lead
to prematurity when all clusters swarm into a local opti-
mal point and thus impact the convergence to global optima.
On the contrary, the metric-distance neighborhood [23–26],
which stands for the neighborhoodwith fixed radius andfixed
space domain, may have the ability to overcome the imper-
fections of topological-distance clustering operations and to
improve the BSO performances accordingly.

The main attempts of this paper include two aspects:
(1) Metric-distance rules are adopted to replace the orig-
inal topological-distance rules in general BSO clustering
strategy and a new improved BSO algorithm is derived. In
accordance with the new cluster operations, the step sizes
which are subject to Gaussian distribution during individ-
ual generations are replaced by the Lévy distribution steps
to extend the search lengths in metric-distance subspaces.
(2) The proposed metric-distance BSO (MDBSO) is applied

to configure the swarm UAVs’ close formation and to opti-
mize the parameters of the baseline formation controller to
obtain a great precision and stability for formation flight. The
rest of paper is organized as follows. Section 2 introduces
the swarm UAVs’ model and a simple proportional-integral
(PI) strategy for basic control in close formation flight. In
Sect. 3, the general BSO are introduced and the MDBSO is
described in detail. In Sect. 4, the MDBSO-based formation
controller is implemented by optimizing the control param-
eters via MDBSO, and comparative simulations with some
homogenous methods are provided and discussed accord-
ingly. Finally Sect. 5 will give a conclusion to this paper.

2 Modeling of swarmUAVs in close
formation flight

In this section, a classical model [4] is introduced to for-
mulate the swarm UAV close formation in leader–follower
form (to be consistent with the leader-follower concept, we
will use follower UAV instead of following UAV, and leader
UAV instead of leading UAV in the remaining of this paper).
Both the follower and leader aircrafts are modeled using
Flight Control System (FCS) structure whereas additional
aerodynamics are also involved in follower model due to the
up-wash effects caused by the leader. Then a basic PI con-
troller is given to hold the formation while the corresponding
essential parameters are stressed in the end.

2.1 Classical UAVmodel with FCS for leader

Without loss of generality, it is assumed that FCS is equipped
on each aircraft that involves the airspeed-hold, heading-hold
and height-hold autopilots [4]. Hence themotion and dynam-
ics are easier to depict without considering complicated aero
forces. The coordinate system is given inFig. 1where a global
North-East-Down (NED) coordinate and a follower-bound
relative coordinate are both involved. Taking the global frame
and FCS into consideration, the classical UAV model of the
leader aircraft can be described by

ẋ ′
L = VL cosψL

ẏ′
L = VL sinψL

V̇L = − 1

τV
VL + 1

τV
VLc

ψ̇L = − 1

τψ

ψL + 1

τψ

ψLc

z̈′L = −
(
1

τa
+ 1

τb

)
ż′L − 1

τaτb
z′L + 1

τaτb
z′Lc (1)

where x ′
L , y′

L , z′L illustrate the global positions in NED frame
and VL , ψL stand for the airspeed value and orientation in
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Fig. 1 Close formation geometry and coordinates with leader-follower
configuration

global coordinate. The commands of airspeed-hold, heading-
hold and height-hold autopilots are given by VLc, ψLc, zLc.
Note that the direction of z′L is reversed with regard to the
height that is z′Lc = −hLc. The constant factors τV , τψ , τa
and τb denote the corresponding time delays in each autopi-
lot. Since the up-wash effects don’t affect the leader, the
general model above is used to formulate the leader aircraft
but not the followers.

2.2 Follower model with coupling up-wash effects

It is well known that the follower aircrafts are successively
influenced by the aerodynamic interactions generated by
the up-wash and side-wash airflow from the leader aircraft
during the close V-shape formation flight [2–6]. Hence the
motion dynamics of followers are changed by additional
aerodynamic forces which shall be described by the relative
geometries between leader and follower. Thus in this paper,
the follower aerodynamic model is deduced on the basis of
a follower-bound relative coordinate as shown in Fig. 1.

The relative frame attached to the follower is a rotating
right-handed frame in which the forward axis always points
to the airspeed. The vector [x, y, z] denotes the relative posi-
tions from the leader to the follower in terms of the relative
coordinate, and [x̄, ȳ, z̄] represents the expected relative dis-
tances accordingly. The relative distances can be obtained
through rotation from the global frame. According to litera-
ture [4], when flying in specific geometries, the follower can
exploit the leader’s vortex to reduce the drags and benefit
from less fuel consumption. On the other hand, it’s broadly
believed that the individuals in close formation can obtain an
optimal spacing when x̄ = 2b, ȳ = π/4 · b, z̄ = 0, where

b is the wingspan of the corresponding leader aircraft [4–6].
Then on the condition of optimal formation geometry, the
motion dynamics can be depicted as

ẋ = − ȳ

τψ

· ψF − VF + VL cos (ψL − ψF ) + ȳ

τψ

· ψFc

+ ȳ · qS

mVF
· (

�CYy · y + �CYz · z)

ẏ = x̄

τψ

· ψF + VL sin (ψL − ψF ) − x̄

τψ

· ψFc

− x̄ · qS

mVF
· (

�CYy · y + �CYz · z)
ż = ζ

V̇F = − 1

τV
· VF + 1

τV
· VFc + qS

m
· �CDz · z

ψ̇F = − 1

τψ

· ψF + 1

τψ

· ψFc + qS

mVF
· (

�CYy · y + �CYz · z)

ζ̇ = −
(

1

τa
+ 1

τb

)
· ζ − 1

τaτb
· z + 1

τaτb
· zc + qS

m
· �CLy · y

(2)

where m, q and S denote the corresponding mass, dynamic
pressure and wing area of the follower aircraft and ζ is an
intermediate variable in vertical control. Due to the addi-
tional effects from the up-wash induced speed of the trailing
vortex of the leader aircraft, additional forces are gener-
ated by adding the coupling forces which can be calculated
by the current location and auxiliary stability derivatives
�CYy , �CYz , �CDz , �CLy [4]. The F-16 model in close
formation is adopted in this paper and detail values of its
configuration are given in Table 1.

2.3 PI controller and adjustable parameters for
formation flight

In the previous research [4], a simple PI controller with a few
state feedbacks was proposed to make up a stable multi-UAV
close formation. As is illustrated in Eq. (3), in order to over-
come the coupling effects caused by leader aircraft, a linear
mixer was used to decouple the dynamic equations by the
feedback compensation of homogenous states in the same
channels. For example, the lateral position y mainly influ-
ences the orientation channel compared with other channels,
so it’s reasonable to implement both y and heading error
feedbacks to the heading controller. Obviously the tracking
responses are fully determined by the adjustable PI gains
kx , ky, kV etc. Thus how to design a perfect strategy to opti-
mize those parameters is an essential problem in this paper.
This will be discussed in Sect. 4 where an optimal controller
will be proposed.

ex = kx (x̄ − x) + kV (VL − VF )

ey = ky (ȳ − y) + kψ (ψL − ψF )
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Table 1 F-16 aircraft
characteristic values in desired
close formation

Wing area S 300 ft2 Altitude h 45,000 ft

Wingspan b 30 ft Dynamic pressure q 155.8 lb/ft2

Mass m 25,000 lb Stability derivatives �CYy 0.0033

Velocity time delay τV 5 s Stability derivatives �CYz −0.0011

Heading time delay τψ 0.75 s Stability derivatives �CDz −0.000782

Altitude time delay τa 0.3075s Stability derivatives �CLy −0.0077

Altitude time delay τb 3.85 s Expected forward space x̄ 60 ft

Airspeed V 825 ft/s Expected lateral space ȳ 23.6 ft

ez = z̄ − z

VFc = kxP ex + kxI

∫ t

0
exdt

ψFc = kyP ey + kyI

∫ t

0
eydt

zc = kzP ez + kzI

∫ t

0
ezdt (3)

3 Metric-distance brain storm optimization

Known as an important swarm intelligence algorithm, BSO
has been widely used to solve complex and multi-objective
problems in both theoretical and practical situations [20].
However the searching ability of BSO for global solutions
is somewhat limited because of its prematurity after a few
iterations. In this section, a modified BSO is proposed with
fresh clustering schemes to improve the global convergence
accuracy, and the advanced method will also be applied to
obtain an optimal controller in the next section.

3.1 General BSO algorithm

BSO is intuitively enlightened by the brainstorming process
of human beings in which a group of persons consistently
share and generate manifold ideas to integrate and produce a
best idea for a difficult and challenging problem [14–20].
Motivated by the general rules of brainstorming process,
three basic operations are developed to constitute the BSO
including the population initialization, the individual cluster-
ing, and the individual generation [14].

Similar to most SI algorithms, BSO begins with the ran-
dom initialization of individuals and the uniform distribution
is selected to generate the swarm evenly located in the search
space. Then the clustering operator divides thewhole popula-
tion into several clusters in termsof the individual locations to
reinforce the distinction of population divergence. In the gen-
eral BSO, k-means clustering method [14] is applied, where
clusters are identified by the principle of proximity defined
by the Euclidean distances accordingly. The cluster center
is evaluated as the individual with the best fitness value in

each cluster. In order to extend the population diversity, a
randomly selected center may be replaced by a new indi-
vidual randomly generated in the whole search space with
a constant probability p5a. The individual generation is a
paramount step in population evolution where one or two
clusters are selected to evolve and generate new individuals.
Whether one or two clusters are evolved is determined with a
probability p6b. Moreover during new individual generation,
two sources shall be chosen to create new individuals either
from cluster centers or from random individuals inside the
clusters in both situations. The selection for the generation
sources in one cluster evolution is determined with the prob-
ability p6biii while the sources are chosen by the probability
p6c in two cluster situation. The probability p6bi determines
which cluster will be evolved in one cluster evolution and
it is proportional to the number of individuals in this clus-
ter. If one cluster is selected, the rule for the new individual
generation is

Xnew = Xselected + ξN (μ, σ ) (4)

where N (μ, σ )denotes theGaussian distributionwith expec-
tationμ and variance σ . The step length ξ is a coefficient that
weights the contribution of the random value which satisfies

ξ = logsig

(
0.5Ncmax − Nc

20

)
· rand (5)

where Ncmax, Nc and rand represent the maximum index of
iterations, index of current iteration and uniformly random
number, whereas logsig() is a logarithmic sigmoid transfer
function. On the other hand, if two clusters are chosen, the
candidate individual changes to

Xselected = ω1X1 + ω2X2 (6)

where ω1 and ω2 are constant weights for the impacts of two
cluster vectors. Finally evaluating the new individual and
the existing individual, the better one will be reserved. If all
the existing individuals are updated, then continue to next
iteration until the maximum iteration index is arrived.
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Fig. 2 Neighborhood defined by the metric distance and topological distance

3.2 Metric distance versus topological distance

As shown in Fig. 2, there are two common definitions of
distances for the neighborhood in the natural flocking model
where individuals frequently interact with their neighbors
to reach consensus of the whole flock. One is metric dis-
tance and the other is topological distance [22–26]. A typical
instance of the metric definition is the classical Reynolds’s
Boid model [24]. It stipulates a constant range of neigh-
borhood for an individual and the communications are only
related to the neighbors. Metric distance tends to attract the
populations into a few solid flocks and finally aggregate to
consensus by interacting betweenflocks [24].As for the topo-
logical distance, it is determined by a fixed number of nearest
neighbors around an individual, and the range and shape of
the neighborhood is changeablewith time [22–24]. The topo-
logical distances are regularly observed in bird flocks and
other animal groups, and are often used to formulate the com-
munication structures of swarm robots.

Figure 2 illustrates the differences between the metric
distance and the topological distance with respect to the
neighborhood definition. As shown in Fig. 2, the neighbor-
hood of a red individual defined by the metric distance is
composed of 5 blue individuals in a fixed yellow circle region
surrounding the corresponding red one with a radius of R.
However, in the same layout, if we define the number of
neighbors in topological distance neighborhood as 3, the 3
nearest blue individuals around the red one become the neigh-
bors and the corresponding area is declined. Hence when we
hope to maintain the search scope and avoid the premature
in the later iteration, the metric distance neighborhood may
provide wider search area than that of topological distance.

Since the general BSO uses the k-means algorithm to
generate the clusters which is similar to a topological dis-
tance based approach, the individuals are prone to aggregate
with high density. However when the clusters swarm into

a local optima, it’s difficult to jump out and the solutions
may fall into premature. In this paper, the traditional cluster-
ing method will be instead replaced with the metric distance
based operation. In order to balance the convergence effi-
ciency in the metric distance regions, Lévy distribution is
utilized to update the individuals.

3.3 Metric-distance BSO

Unlike the k-means clustering in the general BSO, MDBSO
divides the search space into several subspaces which share
an equal and fixed space radius. Then the population is ran-
domly initialized and the clusters in the MDBSO are defined
as the individuals located at the subspaces. Note that the
number of the clusters is equal to that of subspaces. Then
the modified clustering method is presented by the following
rules.

Xi ∈ C j , ∀i = 1, . . . N , j = 1, . . . M and Xd∗
i ∈ (

s j , s j+1
]

s1 = Ld∗ , sM+1 = Ud∗ , s j+1 = s j + Ud∗ − Ld∗

M
(7)

where C j represents the j th cluster and M denote the scope
of clusters and subspaces. N stands for the scope of popula-
tion. d∗ is the criterion dimension randomly chosen in each
iteration, which is limited in the space dimension D. Ld∗
and Ud∗ stand for the lower bound and upper bound of the
whole search space at criterion dimension d∗, and s j repre-
sents the boundary between adjacent subspaces at criterion
dimension d∗. As is illustrated in Eq. (7), the clusters are
classified into several continuous zones with the same span(
Ud∗ − Ld∗) /M (metric distance). Note that in each loop,
the criterion dimension is changed randomly to ensure the
homogeneity of search dimension and the diversity of clus-
ters. Meanwhile to guarantee the duration of the algorithm,
the number of individuals in each cluster P should be kept
at least one.
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During the individual generation process, the center is
selected as the individual with the best fitness value in each
cluster, and the randommutation operation of the cluster cen-
ters also occurs with probability p5a which is consistent with
the general BSO. However during the one cluster evolution,
the cluster selection probability p6bi is replaced by

p j
6bi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

f
j
center

M∑
k=1

1
f kcenter

, for minimization problem

f jcenter
M∑
k=1

f kcenter

, for maximization problem
(8)

where f j
center denotes the fitness value of the j th cluster cen-

ter and p j
6bi stands for the selection probability of the j th

cluster. Since the search region is divided uniformly with
metric distances, the average search span is larger than that
of topological distances as iteration ascends.

In order to balance the search span and convergence speed
inmetric-distance zones, the heavy-tail Lévydistribution [12,
27] is used to update the step sizes in individual generation
operations instead of the Gaussian distribution in the general
BSO. As is depicted in the following probabilistic model
[12], the element step is subject to Lévy distribution which
is a nonlinear composition of two elements subject to the
Gaussian distribution.

step = λ

|θ |1/β , λ ∼ N
(
0, σ 2

λ

)
, θ ∼ N

(
0, σ 2

θ

)

σλ =
⎛
⎝ 
 (1 + β) sin

(
πβ
2

)



(
1+β
2

)
β · 2(β−1)/2

⎞
⎠

1/β

, σθ = 1 (9)

where σλ and σθ are variances of corresponding Gaussian
distributions, while 
 () represents the gamma function. β is
a characterized parameter revealing the fluctuation of Lévy
distribution. A random sample test has been conducted as
shown in Fig. 3 where samples subject to 3 types of Gaussian
distributions with different variances and 3 types of Lévy dis-
tributions with various parameter β have been utilized. The
scale of samples in all randommodels is taken as 1000. Then
respectively the scatter diagram and probability density plot
about these sample results are given in Fig. 3a, b. Besides
the variance of all the samples are also listed in Table 2.
Apparently the Lévy distributions are heavy-tail and share
more violent fluctuations than the Gaussian distributions and
therefore have higher probability to produce wider search
spans. This principle helps to enhance the balance between
the exploitation and the exploration ofMDBSOwhen search-
ing in large-scale regions.

Here the Lévy distribution is adopted to generate new indi-
viduals in metric-distance search regions and we substitute
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Fig. 3 Typical results for the random sample test. a Scatter diagram for
sample test with different distributions. b Probability density for sample
test with different distributions

the original method in Eq. (4) in general BSO by the follow-
ing method.

Xnew = Xselected + step (10)

Xi =
{
Xnew, f (Xnew) < f (Xi )

Xi , otherwise
, Xi ∈ C j (11)

where Xselected is the candidate individual generated by the
cluster evolution and step is a step size subject to Lévy dis-
tribution. f () denotes the fitness function. The individual
generation also abides by the greedy mechanism as shown
in Eq. (11). Note that the new individual Xnew is not neces-
sary to stay within the cluster subspace C j that the current
individual Xi belongs to and the members in each cluster are
changeable with iteration ascending accordingly. Therefore
to ensure each cluster is not empty during evolution, at least

123



Memetic Computing

Table 2 Sample variance list of different distributions

Type of distributions

N (0, 1) N
(
0,

√
2
)

N
(
0,

√
3
)

Levy (β = 1.4) Levy (β = 1.5) Levy (β = 1.6)

Variance 0.9784 1.9568 2.9352 32.9793 15.4708 7.8461

one individual should be reserved in a single metric-distance
cluster. As a result, the detailed procedure of MDBSO is
listed as the following steps and Fig. 4 provides a visualized
flowsheet to summarize the implementation process.

Step 1 Initialize theparameters ofMDBSO, including search
space dimension and boundaries {D,U , L}, maxi-
mum iteration Ncmax , individual population scope N ,
cluster scope M , fitness function f (), series of con-
stant probabilities and other relative parametersβ and
P etc. Generate the initial population randomly and
uniformly in the whole search space.

Step 2 Metric-distance clustering strategy. Select a criterion
dimension d∗ randomly and divide the whole search
space into M subspaces according to Eq. (7). Then
rank each individual’s location and classify into a
corresponding cluster using Eq. (7). Select the cluster
center as the best individual within the corresponding
subspace.

Step 3 With probability p5a, randomly select a cluster center
and replace itwith a new idea generated randomly and
uniformly in the whole search space.

Step 4 Individual generation. With probability p6b, ran-
domly confirm one or two clusters to participate in
the new individual generation.

Step 5 If one cluster is selected, randomly choose a clus-
ter with probability p6bi calculated according to the
Eq. (8). With probability p6biii, pick up the cluster
center as the selected individual and generate new
individual according to the Eqs. (9) and (10). Oth-
erwise, randomly choose an individual within this
cluster and run the generation operator as according
to the Eqs. (9) and (10). Then go to Step 7.

Step 6 If two clusters are selected, randomly and uniformly
choose two clusters, and with probability p6c, com-
bine the two relative cluster centers using the Eq. (6)
as the selected individual and generate new individ-
ual according to the Eqs. (9) and (10). Otherwise,
randomly choose two individuals within two clusters
accordingly and run the above generation operator.
Then go to next step.

Step 7 If the newly generated individual is superior to
the existing individual and at least P members are
reserved in the existing cluster, the current individual
is replaced by the new individual using the Eq. (11).
Otherwise, reserve the current individual.

Step 8 If all individuals have been updated, go to Step 9;
otherwise go to Step 4.

Step 9 If the current iteration Nc arrives at the predefined
maximum iteration Ncmax, terminate and output the
global best individual as the global optimal solution;
otherwise go to Step 2.

3.4 Complexity analysis

The computational complexity ofMDBSO is easily obtained
from the cluster and individual generation processes. Since
the cluster centers and members are changed after new indi-
vidual generation, we shall reclassify the population and
reevaluate the cluster centers before next individual updat-
ing, which is similar with the basic calculation of BSO. In
this paper the polling scheme is used to update the clusters,
and therefore the complexity of MDBSO in each iteration
cycle is O (N · M). On the other hand, assume the calcula-
tion cost of fitness function is T f , the fitness values for the
population are also required to recalculate after each itera-
tion. As the complexity of the individual updating operator
is also O (N · M), we can summarize that the time complex-
ity of MDBSO is O

(
NcmaxNM + NcmaxNT f

)
. As the time

cost grows linearly with the complexity of the fitness func-
tion, when the objective model is complicated, the real-time
performance may not be satisfied and the algorithm should
be adopted offline.

4 MDBSO-based optimal controller design
and simulation results

In this section, we apply our proposed MDBSO to the for-
mulation of an optimal control law for a swarm UAV close
formation. The optimal controller is based on the basic con-
trol approach presented in Sect. 2.3 and the main task for
MDBSO is to optimize the crucial parameters of the basic
controller to obtain precise tracking and strong stability.
Besides, comparative experiments with several homogenous
methods are conducted to verify the advantages of MDBSO.

4.1 Optimal controller for close formation flight
based onMDBSO

As is mentioned above, the adjustable parameters within the
Eq. (3) mainly contribute to the performances of a basic con-
troller. Hence it’s possible and necessary to seek out at least
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Fig. 4 Flowchart of MDBSO implementation
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Fig. 5 Framework of close
formation with MDBSO-based
optimal controller
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a group of satisfied parameters for stable and reliable swarm
UAV formation flight. The controller design can turn into
an optimization problem when we define a comprehensive
fitness function and the novel MDBSO algorithm could be
used to find the optimal parameter solutions and thus formu-
late the optimal controller in close formation. Note that in
addition to the PI gains that should be considered, the feed-
back coefficients kx , ky etc. in mixers are also required to
optimize.

The framework of the whole system with the optimal
controller is shown in Fig. 5 which is composed of two
subsystems. The first is the architecture for close formation
including the formation model and basic controller equipped
at each UAV. The second is the optimal processing module
with MDBSO. The fitness function and optimal parameters
establish the links between these two subsystems. Therein
the fitness function determines the criterion to the parame-
ter optimization and enhancement effectiveness on the basic
controller. Here we choose the following error-integral cri-
terion as the fitness function [12] in MDBSO.

f =
⎛
⎝ 1

Np

Np∑
i=1

∫ t

0

(
e2xi + e2yi + e2zi + e2Vi + e2ψi

)
dt

⎞
⎠

1/2

(12)

where Np denotes the total number of follower aircrafts. This
criterion is clearly a minimization problem that is composed
of the followers’ tracking errors of NED positions, airspeeds
and headings relative to the formation of the leader. There-
fore the objective of MDBSO is to find a group of solutions
that minimize the above fitness function. Randomly generate
a group of initial parameters of basic controller as the initial
solutions and input into the formation architecture, the flight
states and fitness value will be simultaneously updated. Con-

ducting the MDBSO processes, the solutions will be evolved
until the termination conditions are satisfied. Then the whole
system will obtain a group of optimal parameter solutions
and likewise an optimized controller.

As for the parameter selection of MDBSO, the manipula-
tion of the probabilities p5a, p6b, p6biii, and p6c are similar
with the general BSO, which could be referred to [16]. The
criterion dimension d∗ is uniformly distributed within [1, D]
and selected randomly after each iteration. The minimum
number of individuals in a cluster P should be guaranteed at
least one, however through multiple experiments, we find a
range of [2,5] is preferable for the convergence precision of
MDBSO. On the other hand, according to the random sam-
ple test in Sect. 3.3, the characterized parameter β = 1.5 of
Lévy distribution is more reasonable since the correspond-
ing variance is moderate that could balance the expansion of
search spans and the fluctuation of search steps.

4.2 Comparative experiments and analysis

In this section, numerical simulations are carried out to verify
the advantages of MDBSO-based controller. Comparisons
with the general BSO as well as PSO and DE are also imple-
mented throughout experiments. In these simulations, four
follower F-16 aircrafts are involved to constitute a V-shape
close formation with the expected spaces listed in Table 1.
The leader dynamics comply with the following guidance
law and the initial states of each aircraft in global frame are
given in Table 3.

⎧⎨
⎩
VLc (t) = 825 ft/s
ψLc (t) = 30 · t

Tmax
deg

hLc (t) = 45, 000 ft
(13)
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Table 3 Initial global states of
swarm UAVs

Leader Follower1 Follower2 Follower3 Follower4

North Pos. (ft) 0 −80 −80 −160 −160

East Pos. (ft) 0 −40 40 −80 80

Altitude (ft) 45, 000 42,000 42,000 42,000 42,000

Airspeed (ft/s) 820 800 800 800 800

Heading (deg) 0 −10 10 −10 10

x̄ (ft) 0 60 60 120 120

ȳ (ft) 0 23.562 −23.562 47.124 −47.124

Table 4 Configurations for
BSO and MDBSO in
comparative experiments

Common coefficients

N 180 D 10 M 6 Ncmax 30

BSO and MDBSO parameters

p5a 0.2 p6b 0.8 p6biii 0.4 p6c 0.5 P 3

ω1 0.5 ω2 0.5 μ 1 σ 0 β 1.5

Parameter boundaries of basic controller

kx [−10, 0] ky [−10, 0] kV [0, 10] kψ [0, 10] kxP [0, 10]

kxI [0, 1] kyP [0, 10] kyI [0,1] kzP [0, 10] kzI [0, 1]

Table 4 provides a list of configuration coefficients in BSO
andMDBSO. The termination time of once flight simulation
is Tmax = 10 s while the sampling period of swarm UAV
close formation model is 0.01 s. Moreover the homogenous
methods including PSO and DE are also configured that is
given in Table 5. On the other hand, in order to verify the
robustness and stability of an optimal controller, wind dis-
turbances in the form of the Eq. (14) are also involved which
mainly affect the airspeed channel. Two types of wind are
considered that are wind turbulence and gust. Wind turbu-
lence emerges with probability PT = 0.5 and performs as
cosine fluctuations with maximal magnitude Vmax = 40 ft/s,
while the wind gust Vgust is a standard Gaussian white noise.
Simulation results are shown in Figs. 6, 7 and 8. The average
fitness evolution curves of MDBSO and other methods are
displayed in Fig. 6. State tracking curves in forward and lat-
eral channels with MDBSO are displayed in Fig. 7. Figure 8
illustrates a 3D scene graph where 4 followers and 1 leader
constitute a V-shape close formation with the guidance of a
MDBSO-based optimal controller.

VW (t) =
{

Vmax
2

(
1 − cos

(
π t
Tmax

))
, rand (t) < PT

5 · Vgust (t) , else
(14)

According to Fig. 6, it’s demonstrated that the pro-
posedMDBSO contributes tomore accurate fitness solutions
and faster convergence speed than general BSO and other
homogenous algorithms. It is assumed that the reasons for
this superior search ability of MDBSO come from two

Table 5 Configurations for PSO and DE in comparative experiments

Coefficient Description Value

ω Inertia factor 0.6

c1 Self-best factor 2

c2 Global-best factor 2

Pcr Crossover probability 0.7

F Mutation factor 0.5

0 5 10 15 20 25 30
1431.91

1431.92

1431.93

1431.94

1431.95

1431.96

1431.97

Nc

Fi
tn
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es
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Fig. 6 Average evolution fitness curves of multiple optimizations
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Fig. 7 State evolutions in forward and lateral channels with MDBSO-
based controller. a Tracking trajectories of longitudinal relative dis-
tances of multiple following UAVs. b Tracking trajectories of lateral

relative distances of multiple following UAVs. c Airspeed fluctuations
of multiple UAVs with wind disturbances. dHeading variations of mul-
tiple UAVs

aspects. One is the wider average search spans of multi-
ple clusters in metric distance operations which increase
the probability to explore more unknown spaces and there-
fore improve the probability to obtain the global optima.
Moreover after a few iterations, clusters in different metric-
distance subspaces still enable a high frequency of population
exchanges, instead of the weak interactions in topological
clusters that generalBSObehaves. Thismechanismenhances
the diversity of individuals in the later period of algorithm
and thus improves the large scale search ability. The other
is the Lévy distribution search step operator which could
generate large scale step sizes and enable fast investigations
in wider metric-distance areas. Since the variances of Lévy
distribution are higher than that of other typical distribu-

tions, MDBSO could have higher probabilities to generate
large-length search steps and enhance the balance between
the convergence speed and precision in the metric-distance
subspaces, and therefore enhance the accuracy and search
speed simultaneously.

What’s more, the results in Fig. 7 indicate that although
subject to strong wind turbulences and gusts, the MDBSO-
based optimal controller still keeps the whole formation
robust and solid. Table 6 exhibits the optimal parameters that
MDBSO generated. From Fig. 7a, b, it is obvious that the
tracking precision of expected distances in both directions is
satisfactorily achieved, and we also obtain a fast and stable
tracing of the leader heading according to Fig. 7d. In terms
of Fig. 7c, although wind disturbances strongly influences
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Fig. 8 3D trajectories of V-shape close formation

Table 6 Optimal parameters for formation control via MDBSO

kx ky kV kψ kxP
−9.7451 −0.6900 9.5771 5.9970 7.0000

kxI kyp kyI kzP kzI
0.5468 9.8000 0.6400 9.7689 0.0300

the airspeed of the leader UAV and increase the difficulty
of stable retention, the follower UAVs still keep pace with
the leader with slight fluctuations. Hence the robustness and
strong stability of the proposed controller are verified. Finally
Fig. 8 presents a vivid and distinct simulation spectaclewhere
all swarm UAVs are able to keep up with a stable V-shape
close formation under strong unknown circumstances.

5 Conclusions

In this paper, a novel metric distance based brain storm opti-
mization algorithm has been developed and applied for the
stable control of swarm UAV close formation flight. With
reference to a previous research, a classical feedback con-
troller has been utilized and the concentration in this paper

is focused on the optimal strategy for parameter adjustment
via the proposed method.

Although BSO has been widely used in solving almost
all kinds of scientific puzzles, there are still some limitations
intuitively. Since the clustering benchmark of a general BSO
is based on topological distance-based dividing approach,
which however declines the search ability in large-scale areas
in later iteration period, a metric-distance clustering mecha-
nism has been used to improve the BSO’s performances. In
MDBSO, the clusters are partitioned in terms of fixed search
subspaces and the average search span for each cluster is
wider than that of a general BSO. Meanwhile the heavy-tail
Lévy distribution has been utilized to generate new individu-
als for the sake of accelerating the search speed and balancing
the equilibrium between exploitations and explorations in the
metric-distance subspaces. Comparative simulation results
have illustrated that MDBSO is capable of generating opti-
mal parameters of the basic controller and theMDBSO-based
optimal controller is adequate to stable and accurate forma-
tion tracking even under rough situations. In the future, the
novel algorithm is expected to extend the application in mul-
tiple disciplines and the concept of themetric-distance search
regions is welcomed to transplant into more advanced intel-
ligent algorithms.
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