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A Cauchy mutant pigeon-inspired
optimization–based multi-unmanned
aerial vehicle path planning method

Bo Hang Wang , Dao Bo Wang and Zain Anwar Ali

Abstract
To improve the performance of multi-unmanned aerial vehicle path planning in plateau narrow area, a control strategy
based on Cauchy mutant pigeon-inspired optimization algorithm is proposed in this article. The Cauchy mutation opera-
tor is chosen to improve the pigeon-inspired optimization algorithm by comparing and analyzing the changing trend of
fitness function of the local optimum position and the global optimum position when dealing with unmanned aerial vehi-
cle path planning problems. The plateau topography model and plateau wind field model are established. Furthermore, a
variety of control constrains of unmanned aerial vehicles are summarized and modeled. By combining with relative posi-
tions and total flight duration, a cooperative path planning strategy for unmanned aerial vehicle group is put forward.
Finally, the simulation results show that the proposed Cauchy mutant pigeon-inspired optimization method gives better
robustness and cooperative path planning strategy which are effective and advanced as compared with traditional
pigeon-inspired optimization algorithm.
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Introduction

Path planning is the first step in a moving multi-agent
mission system. To distinguish from path management,
path planning aims to find a set of waypoints from a
start position to a target position to instruct agents
moving.1 While path management aims to generate
feasible trajectories based on waypoints which are para-
meterized by time and could be described by twice-
differentiable polynomials. Path management is neces-
sary for most of the intelligent agents, for example,
unmanned aerial vehicles (UAVs), which are unable to
move along zigzags paths which are simply generated
by connecting the waypoints.

Two decades ago, path planning problem focus on
the ground moving robot mission with known threat
locations. The path planning method based on ran-
domly sampling search algorithms such as rapidly
exploring random tree, probabilistic roadmap and
Voronoi diagram approach are able to give a near opti-
mal solution.2–4 Unfortunately in some complex envir-
onments, for example, when unpredictable obstacles
exist, these randomly sampling search algorithms usu-
ally cannot construct feasible paths for robots. As a
result, this contradiction promotes the motivation to
work out more practical path planning strategy. To

implement path planning in complex environment
effectively and efficiently, about a decade ago many
traditional heuristic algorithms, such as spares A* algo-
rithm, D* algorithm and model predictive control
(MPC), are utilized to develop more advanced path
planning strategies.5–9

In recent decade, three-dimensional (3D) UAV
cooperative mission path planning problem attracts
prime attention since the traditional heuristic-based
path planning methods suffer more and more chal-
lenges that resulted from realistic mission requirements,
physical constrains of devices and complex environ-
mental threats. The traditional heuristic path planning
strategies are unable to give an optimal or sub-optimal
solution rapidly and accurately in the new difficult mis-
sion settings, they have slow search speed and easily fall
into local areas. To find paths timely and effectively
with minimum fuel consumption and collision free in
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3D cluttered complex environment, artificial intelli-
gence (AI)–based path planning method attracts wide
publicity. This kind of algorithms are inspired from
nature including simulated annealing (SA), genetic
strategy (GS) algorithm, ant colony (AC) algorithm,
artificial neural network (ANN) algorithm, pigeon-
inspired optimization (PIO) algorithm, bat strategy
algorithm (BA) and artificial bee colony (ABC) algo-
rithm. These AI algorithms can work out the near opti-
mal paths in 3D complex cluttered environment with
fast convergence speed, but sometimes, the research
process may also fall into local optimization.10–18 To
improve the optimality of solutions obtained by AI-
based path planning algorithm, many researchers dedi-
cate their efforts. Wu et al.’s19 metropolis criterion
which is based on probability theory is utilized to
obtain new individuals for traditional particle swarm
optimization (PSO) algorithm. In an advanced path
planning strategy, chromosome-encoding strategy is
proposed for conventional genetic algorithm to guaran-
tee a feasible path to avoid the searching circulation.
While a call back mechanism is designed in for tradi-
tional bee colony algorithm to give a shortest and safest
path.20,21

In this article, multi-UAV co-operative path plan-
ning problem in plateau narrow area is defined. By
comparing with other 3D sceneries, mountainous pla-
teau environment provides more challenges for UAV
path planning, for example, dangerous peaks and
unpredictable meteorological factors like atmospheric
turbulence, wind shear and so forth.22 These disadvan-
tages will seriously affect the stability of UAV co-
operative flight. When implementing path planning in
this extremely complex workspace, an AI path plan-
ning algorithm with fast convergence speed is urgently
required. A new kind of swarm intelligence optimiza-
tion algorithm based on pigeon homing behavior algo-
rithm is proposed in Duan and Qiao,12 called PIO
algorithm. The most remarkable advantage of PIO
algorithm is its fast convergence speed.

The algorithm consists of two independent comput-
ing sections: geomagnetic navigation section and land-
mark navigation section, which simulates the
navigation mechanism of pigeons using different navi-
gation tools at different stages in the process of finding
their destination. Specifically, pigeons first adjust their
direction through geomagnetic field and solar altitude,
and then they will judge the direction and location by
the landmark information adjacent to the destination.
Inspired by the process by which pigeons find their nest
and the similarity of the process with UAV path plan-
ning process, that is, both have multi-objective optimi-
zation problems with known starting and ending
points, it is feasible to apply the pigeon’s behavior
model for the path planning of UAVs.

However, due to the high complexity of plateau nar-
row area and its internal attribution, PIO algorithm is
easy to fall into local optimum in the early stage of
operation, resulting in unsatisfactory results. The best

way to avoid local optimum is to increase the diversity
of population. In this article, mutation operator is
employed for map and compass operator. Normally,
mutation operator is used in genetic operation to ensure
population diversity, which is similar to the process of
biological variation. Mutation operation could create a
new individual by changing some information of an
original individual. In general, mutation operators23

include bit element mutation, boundary mutation, uni-
form mutation, Cauchy mutation and so on.

By comparing and analyzing the changing trend of fit-
ness function of the local optimum position and the glo-
bal optimum position when solving UAV path planning
problems, Cauchy mutation operator is chosen to
improve the PIO algorithm, the new algorithm is called
Cauchy mutation PIO (CM-PIO) algorithm. This
improved PIO algorithm can effectively extend the search
area by mutation operation and could ensure that the
pigeons can fly to the global optimal solution quickly. It
can also reduce the risk that the solution will fall into the
local optimal. Cauchy mutation operator aims to change
the individual’s state value by selecting random numbers
obeying Cauchy distribution, and to realize individual
variation. In addition, considering the length and loca-
tion information of each UAV path, a cooperative path
planning strategy for multiple UAV is designed.

The main contributions in this article are as follows:

1. The integrated model of multi-UAV co-
operation path planning problem is established
including plateau topography model, plateau
wind field model, a variety of constrains of
UAV, including maximal flight length, minimal
length of leg, maximal turning angle, maximal
climb/dive angle and maximal flight altitude
and the expression of fitness function.

2. For the reason that conventional PIO algorithm
easily falls into a local optimal area when sol-
ving multi-UAV co-operative path planning
problem in plateau narrow area, during PIO
iteration process, Cauchy mutation operator is
added into map and compass operator. This
improved PIO algorithm (CM-PIO algorithm)
is able to provide better solution than conven-
tional one.

3. Based on the proposed CM-PIO algorithm, a
co-operative path planning strategy for multiple
UAVs is presented, where a coordination coeffi-
cient is designed to consider the length and loca-
tion information of each UAV path.

The organization of this article are as follows: sec-
tion ‘‘Problem formulation’’ defines the complete prob-
lem formulation constraints, that is, UAV parameters,
terrain constraints, wind field model, the cost of path
and multi-objective optimization model which is fol-
lowed by section ‘‘PIO Algorithm,’’ which discusses the
PIO algorithm. Section ‘‘CM-PIO-based path plan-
ning’’ defines the CM-PIO-based path planning of
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UAVs. In section ‘‘Cooperative path planning strat-
egy,’’ the path planning strategy is discussed. Section
‘‘Simulation results and discussion,’’ defines the simula-
tion results and its discussion. Finally, section
‘‘Conclusion’’ concludes the whole article.

Problem formulation

UAV’s parameters

Each UAVs have their own parameters, taken from
Hebecker et al.24 and Jian et al.,25 such as maximum
range limit, the shortest route limit, maximum turning
angle limit, maximum climb/dive angle limit and maxi-
mum flight altitude limit.

Maximal flight length. The maximal flight length of UAV
is limited by the amount of fuel. Besides, when UAV
flies through a wind field, the drag becomes larger and
causes an increment in the consumption of fuel.
However, when passing through the mountain areas,
the UAVs have the action of climbing or descending.
In this case, the energy consumption of the UAV is
higher. So, the maximal flight length will be limited.
Assuming that the maximal flight length is Lmax and a
complete path is divided into n sections. li, represents
the length of section i, the flight length should satisfy

Xn
i=1

li4Lmax ð1Þ

Minimal length of leg. When UAV flies in a leg, it needs
some time to adjust their altitude to reach the next leg.
To ensure flight safety and quality, the length of leg
must be more than the smallest value. The length of
every legs should satisfy

li =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � xi�1)

2 + (yi � yi�1)
2 + (zi � zi�1)

2
q

li5lmin (i=1, 2, :::, n)

(

ð2Þ

Maximal turning angle. The maximal angle between the
directions in current leg and next leg are called the max-
imal turning angle. To avoid mountains, sometimes
UAVs have to change their flight direction. But, the
maximal turning angle of UAV is limited by its maneu-
verability. The real turning angle must be smaller than
their maximal turning angle. Assuming ai and ai+1 rep-
resent the projection of the sections i and i+1, respec-
tivley. The legs on horizontal plane, umax, represents
the maximal turning angle. ai and ai+1 should satisfy

aTi ai+1

aij j ai+1j j5 cosumax, i=1, 2, . . . , n� 1 ð3Þ

Maximal climb/dive angle. Maximal climb/dive angle
refers to the maximal angle to which UAV is able to
climb or dive relative to horizontal flight, and the maxi-
mal climb/dive angle is expressed as qmax. Assuming pi
and pi+1 represent the ith waypoint and (i+1)th way-
point with the coordinates (xi, yi, zi) and (xi+1, yi+1,
zi+1), respectively. While, p0i and p0i+1 represents the
projection of pi and pi+1 on horizontal plane, the fol-
lowing relationship should be satisfied as

zi+1 � zij jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi+1 � xi)

2 + (yi+1 � yi)
2

q 4 tanqmax ð4Þ

Maximal flight altitude. When flying at low temperature
environment, which is one of the main features of pla-
teau, performance engine always suffers degradation.
The maximal flight altitude of UAV is lower than that
in plain areas. Assuming the maximal altitude is Hmax,
the real-time altitude Hi cannot exceed its maximal alti-
tude, that is

Hi \Hmax ð5Þ

Terrain constraint

A function commonly used in terrain simulation is used
to generate datum terrain and peak terrain in Chao.26

The expression of datum terrain function is

Z1(x, y)= sin (y+ a)+ b � sin (x)+ c � cos d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p� �
+ e � cos (x)+ f � sin f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p� �
+ g � cos (y)

ð6Þ

where a, b, c, d, e, f, g are all constants, x and y are the
horizontal coordinates and Z1 is the altitude at a cer-
tain horizontal position. The values of a, b, c, d, e, f, g
are relative to the degree of height fluctuation.

The expression of peak terrain function is

Z2(x, y)

=
Xi=N

i=1

hi exp �
x� x0i
xsi

� �2

� y� y0i
ysi

� �2
" #

+Z0

ð7Þ

where (x0i, y0i) represents the position of the center of
ith peak projecting on the ground plane. hi is the alti-
tude of the peak i. (xsi, ysi) represents the decline scale
along the x direction and y direction of the peak i.
While, Z0 represents the base altitude. N represents the
number of peaks.

Combining the datum terrain function and peak ter-
rain function, the plateau terrain will be described as

Z(x, y)= max (Z1,Z2) ð8Þ

which is depicted in Figure 1.
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Wind field model

When UAVs fly in plateau mountainous area, their
speeds and altitudes will be disturbed by wind. As a
result, it is difficult to maintain a fixed formation of
flight and even brings disadvantage to the flight safety.
In this research, the wind field is taken as a threat area
and the spherical model is used to represent the wind
field which is written as

(x� xk0)
2 + (y� yk0)

2 + (z� zk0)
24rk

2 ð9Þ

where (xk0, yk0, zk0) is the center of k the wind field, rk
represents the radius of its spherical model. In the co-
operative path planning process, the wind field should
be avoided as far as possible.

The cost of path

The cost of path is an important index to evaluate the
quality of a planned path. The purpose of path plan-
ning is to find a suitable path with the lowest cost of
path. Based on the actual flight environment and the
UAV’s performance, the cost of path is classified into
three sectors: distance cost, altitude changing cost and
threat cost.

Distance cost. The limited amount of fuel must be taken
into account in path planning. So, the flight distance
should be shortened as far as possible. Assuming that a
complete path is composed of n legs, the distance cost
is expressed as

fL =
Xn
i=1

li ð10Þ

where li represents the length of i, the leg of the path.

Altitude changing cost. When UAVs fly near a peak, some
height changing actions have to be implemented to
avoid the peaks. But this maneuver will cause fuel con-
sumption. In addition, low temperature makes the
engine perform worst, frequent maneuver may bring

risk for the flight safety. Therefore, frequent altitude
change should be avoided as far as possible.

The altitude changing cost can be expressed as

fH =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i=0

zi �
1

n+1

Xn
i=0

zi

 !2
vuut ð11Þ

Threat cost. The threat cost is related to the distance
between the UAV and the threat area. The closer the
UAV is to the threat area, the bigger the threat cost is.
The main threat areas considered in this article are ter-
rain threat and wind field threat. The threat cost is
defined as

fsafe =
K

avgR , path not through the threat area
e, path through the threat area

�
ð12Þ

where

avgR=

Pn
i=1

ri

n
ð13Þ

where K is a constant whose value is relative to the real
flight space, e is penalty coefficient, which is generally a
big number, n is the number of legs, ri is the distance
between i, the leg of path and the center of the threat
area.

Multi-objective optimization model

Considering the parameters of UAV and the cost of
path, a multi-objective optimization model for UAV
path planning can be obtained using the fitness func-
tion that can be expressed as

min fg(x)= min f1(x), f2(x), f3(x)½ �
f1(x)= fL(x), f2(x)= fH(x), f3(x)= fsafe(x)

�
ð14Þ

and the constraint function is written as

Pn
i=1

li4lmax, i=1, 2, :::n

li5lmin, i=1, 2, :::n

ui4umax, i=1, 2, :::n

qi4qmax, i=1, 2, :::n

Hi \Hmax, i=1, 2, :::n

8>>>>>>>><
>>>>>>>>:

ð15Þ

For the multi-objective function, it is difficult to find
a solution that satisfies the minimal value of each eva-
luation function at the same time. It is necessary to
synthesize all the cost values by appropriate weights to
coordinate every performance. The fitness function of
UAV path planning is constructed as

f(x)= k1f1(x)+ k2f2(x)+ k3f3(x) ð16Þ

The weights in the formula can be adjusted according
to the actual mission requirements and flight

Figure 1. The 3D plateau terrain.
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environment requirements. When the desired mission
time is short, the distance cost weight will be increased.
While if the desired flight path of UAV is smooth, the
altitude changing cost will be increased.

PIO algorithm

PIO algorithm is divided into two independent stages.
In the first stage, the pigeon updates the position and
speed of the individual by map and compass operator
principle. In the second stage, the pigeon updates the
state by landmark operator principle.

The description of PIO algorithm is as follows:
Assume that the search area of PIO algorithm is a ‘‘D’’
dimensional space, and there are ‘‘M’’ pigeons in the
group, in which the position of the ith pigeon represents
one of the solutions of the optimization problem. Each
individual pigeon will constantly adjust its position
according to certain rules. With the help of fitness func-
tion, the fitness of each individual can be calculated.
The individual position will be continuously updated in
each iteration, and finally the optimal solution will be
found. The position of the ith pigeon in the ‘‘D’’ dimen-
sion space can be expressed as Xi =(Xi1,Xi2, :::,XiD),
velocity can be expressed as Vi =(Vi1,Vi2, ::::,ViD),
where i=1, 2, :::,N.

In the first stage, each individual states are updated
according to the information of the best individual in
the population by updating position according to for-
mula (16) and updating the speed according to formula
(17)

VNc

i =VNc�1
i � e�R3Nc + rand � (Xgbest � XNc�1

i ) ð17Þ

XNc

i =XNc�1
i +VNc

i ð18Þ

where Nc represents the current iterations, R represents
the map and compass factor. rand is a random value
from 0 to 1. After Nc � 1 iteration, the optimal position
Xgbest in the whole population is obtained by compar-
ing the position of all the (pigeons) or UAVs. The max-
imal iteration in the first stage is set as Nc1max. After
Nc1max iterations obtained by map and compass factor,
the position and speed that update the rules of pigeon
group will change, and the whole process enters the sec-
ond stage.

In the second stage, when the pigeons approach tar-
get position, their states will be updated according to
the landmark information. Some individuals will follow
other individuals who are near the landmark, while
some far from the landmark that will be abandoned
because they have no ability to find the optimal path.
In the calculation process, the number of pigeons will
be halved in each iteration by abandoning pigeons that
have poor adaptability and then look for the central
location Xcenter in the remaining population, regarding
it as the landmark for flight. The state changes accord-
ing to the following formulas

XNc�1
center=

PNNc�1

i=1

XNc�1
i F XNc�1

i

� 	
NNc�1

PNNc�1

i=1

F XNc�1
i

� 	 ð19Þ

NNc =
NNc�1

2
ð20Þ

XNc

i =XNc�1
i + rand XNc�1

center � XNc�1
i

� 	
ð21Þ

where F is related to the fitness function. It could be
expressed as

F XNc�1
i

� 	
= fitness XNc�1

i

� 	
, fitness XNc�1

i

� 	
. 0

ð22Þ

The maximal iteration in the second stage is Nc2max.
After the Nc2max iteration of landmark operator, the
optimization process is finished and the optimal solu-
tion is obtained as its output.

CM-PIO-based path planning

Cauchy distribution is a continuous probability distri-
bution without variance and mathematical expectation.
If the random variable x satisfies the probability density
function, it is called Cauchy distribution.

The probability density function of Cauchy distribu-
tion is

f(x; x0, y)=
1

p

g

(x� x0)
2 + g2


 �
, x 2 (� ‘, +‘)

ð23Þ

In equation (22), x0 is the peak value of the distribu-
tion and g is the width corresponding to half of the
maximum value. When g =1 and x0 =0, the random
variable satisfies the standard Cauchy distribution, it is
recorded as X;C(1, 0). The corresponding cumulative
distribution function is an incremental function as

F(x; 0, 1)=
1

p
arctan (x)+

1

2
, x 2 (� ‘, +‘) ð24Þ

Cauchy mutation map and compass operators

In the traditional PIO, map and compass operators are
mainly used to find the global optimal individuals in
the search space, and then positions and speeds of the
pigeon swarm will be changed by referring to the opti-
mal individuals. While choosing the Cauchy mutation
c1 as the maps and compass operators can not only
expand the search area, but also reduce the risk of fall-
ing into local optimum.

The Cauchy weight coefficient c1 obeys the Cauchy
distribution

1

p
arctan (c1)+

1

2
= rand ð25Þ
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where rand is a random value from 0 to 1, c1 could be
expressed as

c1 = tan p(rand� 1=2)½ � ð26Þ

In each iteration, the position of the individual pigeon
is updated by the following rule

X0i =Xi0 + c1(Xi0 � Xgbest) ð27Þ

where Xi0 is the calculated position of i, the pigeon.
Xgbest is the optimal individual with the optimal fitness
after Nc � 1 iterations. While X0i is the position of i, the
pigeon after update. The position of the i pigeon at next
iteration will be

Xi =
X0i, f(Xi0). f(X0i)
Xi0, f(X

0
i). f(Xi0)

�
ð28Þ

As for Cauchy mutation map and compass oper-
ators c1, when it is positive, the updated position X0i will
be farther from the global optimal position Xgbest and
vice versa. By adding Cauchy mutation, half of the
individuals in the population will diffuse outward to
find a better location, while the other half will be not.
Comparing the undated positions with the original
position, the individual with better fitness can be
retained, which can not only ensure the quality of opti-
mization but also improve the diversity of the
population.

Cauchy mutation landmark operators

In the tradition PIO algorithm, the scale of population
will be reduced by half at each iteration in the land-
mark operator stage, with pigeon moving toward the
central position of the pigeon swarm. Unfortunately,
this rapid reduction of population will lead to prema-
ture convergence of the algorithm, which will have a
negative impact on the optimization of the landmark
operator stage. To avoid the premature convergence or
missing the optimal solution, the traditional landmark
operator is replaced by a Cauchy function, updating
the individual position relying on the optimal position
in the population. The Cauchy function is described as

F(x; 0, 1)=
2

p
arctan (x),x 2 (0, +‘) ð29Þ

Cauchy weight coefficient c2 obeys Cauchy distribution,
which is

2
p
arctan (c2)= rand
c2 = tan 2

p
rand

� 	�
ð30Þ

where c2 is a positive constant. The rule for updating
individual position could be expressed as

XNc

i0 =XNc�1
i0 + c2 Xgbest � XNc�1

i0

� 	
ð31Þ

where XNc�1
i0 is the position of ith individual in Nc � 1

iteration, Xgbest is the position of global optimal
individual.

In the Cauchy mutant landmark operator stage, all
individuals gradually approach the global optimal solu-
tion because of the positive constant c2. A suitable
Cauchy mutant can make the pigeon swarm effectively
move with the appropriate speed and direction and
guarantee the stable convergence of the algorithm.

Cooperative path planning strategy

Assuming three UAVs take off from different locations
at a same time and fly to one specific area for a mission.
During the flight process, the three UAVs are required
to keep safety distance and reach the target area within
a similar duration.

Figure 2 depicts a scenario for multiple UAV coop-
erative path planning. Basically, each UAV must avoid
flying in threatening area. The figure shows the shortest
safe distance D between each two UAVs. So, the dis-
tance between any two planned paths must be less than
this safe distance D. In addition, UAV1, UAV2 and
UAV3 are required to meet the time constraints27 by
adjusting the lengths of paths.

Therefore, in addition to care about the parameters
of UAV, multi-UAV path planning also care about the
space and time relationships between all UAVs which
may give some constraints to cooperative path
planning.

First, a sufficiently safe distance dsafe between two
adjacent UAVs must be kept during the flight.
Assuming that the position of UAV1 is x1(t) at the
moment t and that of UAV2 is x2(t). The flight dis-
tance between the two UAVs should satisfy the follow-
ing relationship

x1(t)� x2(t)k k5dsafe ð32Þ

When all UAVs generally approach the target area, and
their distances get closer and closer, so the safe distance
should be set different value in different stages as

dsafe=
D, t4T
d, t.T

�
ð33Þ

Figure 2. A background setting for cooperative path planning.
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where T is 80% of the total flight time, D and d are set
according to the specific planning area.

Moreover, both UAVs are desired to reach their
desired target position simultaneously. According to
the allowed speed range and length of path, the shortest
time and the longest time for each UAV to reach the
target point will be calculated. Assuming the allowed
speed range of UAVi is Vi = ½Vimin,Vimax� and the
length of path is Li, the flight duration will satisfy

T1 2 T1min,T1max½ �= L1

V1max
,

L1

V1min


 �
ð34Þ

The temporal cooperation rule for two UAVs is

max T1min,T2min½ �\ min T1max,T2max½ � ð35Þ

In this case, the two UAVs will have the possibility to
simultaneously arrival to the target position.

To meet the spatial requirement and the temporal
requirement of UAV group, two coordination coeffi-
cients are added to each UAV’s path evaluation func-
tion. They could be expressed as

fco= fspace + ftime ð36Þ

fspace =
d, meet spatial requirment

0, notmeet spatial requirment

(
ð37Þ

ftime =
N

T1�T2
, meet spatial requirment

0, not meet temporal requirment

(
ð38Þ

where fspace is the spatial coordination coefficient, d is
the distance between two UAVs, ftime is the temporal
coordination coefficient, N is a constant. T1 and T2 are
the required time for UAV1 and UAV2 to arrive the
targeted position.

In terms of the proposed strategy for cooperative
path planning problem, each UAV is represented by a
sub-population, and each sub-population evolves inde-
pendently. Only when evaluating the individual fitness,
the information between sub-populations will be com-
municated. In the multi-population’s co-evolution pro-
cess, the optimal individuals of each population are
selected to communicate with other populations. This
co-evolution process is shown in Figure 3.

The path planning process for each UAV will refer
to other UAV’s paths and calculating the spatial and
temporal coordination coefficients between UAVs.
Finally, more suitable path will be selected which not
only have advanced fitness but also meet the coopera-
tion requirement.

The specific steps of CM-PIO cooperative path plan-
ning strategy are presented as following:

Step 1. Define the area for path planning of every
UAV.
Step 2. Initialize the algorithm parameters including
the scale of population M, the dimensions of area D,
map and compass factors R, maximal iteration Nc1max

and Nc2max in the first stage and second stage, respec-
tively, the weight coefficients and so on.
Step 3. Individual coding rules randomly generates M
individuals with positions and speeds which are within
the allowed range of vmin, vmax½ �.
Step 4. Find m, the most optimal individuals in each
population, by fitness function. And then combining
with the information of other populations, find the ith
individual with the biggest cooperation coefficient
marked as xigbest in each population.
Step 5. Update the individual’s positions and speeds in
each population by the Cauchy mutation map and
compass operator.
Step 6. Compare the current iteration in map and com-
pass operator stage with the maximal iteration Nc1max.
If the current iteration is bigger than the maximal itera-
tion Nc1max, the operation will enter the landmark
operator stage. Otherwise, return to step 4.
Step 7. Update the individual’s positions by landmark
operators.
Step 8. Compare the current iteration in landmark
operator stage with the maximal iteration Nc2max. If
the current iteration is bigger than the maximum itera-
tion Nc2max, the operation finishes. Otherwise, return
to step 7.

The diagram of multi-UAV coordination path plan-
ning strategy is shown in Figure 4.

Simulation results and discussion

The simulation results is carried out on MATLAB/
2014a. Providing a path consisting of 11 waypoints and
10 path sections. Flight space is set as
20 km320 km35 km. There are three fixed-wing UAVs
with same parameters involved in the experiment.

Simulation parameters

The parameters of UAV are presented in Table 1.
Based on the field investigation and topographic

analysis of the mountainous area in the Qinghai-Tibet
plateau, the parameters of the datum terrain are indi-
cated as a=10, b=0:2, c=0:1, d=0:6, e=1, f=1
and g=0:1.

Figure 3. Co-evolution process in coordination path planning.
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The parameters of the peak terrain are shown in
Table 2.

The parameters of wind field model are shown in
Table 3.

The parameters of proposed CM-PIO algorithm are
presented in Table 4.

For the fitness function, weights of distance cost,
altitude changing cost and threat cost are
k1 =0:4,k2 =0:2 and k3 =0:4, respectively. In terms
of minimal safe distance in cooperative path planning,
setting D=500m, d=100m. The temporal coopera-
tive coefficient is set as N=300.

The coordinates of start and target points for each
UAV are shown in Table 5.

Results of CM-PIO-based path planning method. To verify
the robustness of the proposed path planning algo-
rithm, the paths planned by traditional PIO algorithm
are also presented in Figure 5. The cone represents the
peak, the sphere areas near the peak represent the wind
field, the solid line represents the optimal path planned
by CM-PIO algorithm and the dash line represents the
optimal path planned by PSO algorithm. Each path
includes 11 waypoints which are represented by circles.

It can be seen from Figure 5 that both algorithms
can plan feasible paths. Although, the route planned by
PIO algorithm can avoid the threat of mountain peaks,
the total distances are longer and the altitude near the
peak and wind field suffer greatly changing, which will
increase the risk of collision. The paths planned by
CM-PIO is shorter, smoother, lower cost and safer.
Figure 6 illustrates the change in the fitness of the

Figure 4. Procedure of CM-PIO cooperative path planning
strategy.

Table 1. Parameters of UAV.

Parameters Symbol Value Unit

Maximum turning angle umax 120 �
Max flight distance Lmax 50 km
Shortest route lmin 0.2 km
Max flight altitude limit Hmax 1.2 km
Max climb/dive angle qmax 80 �
Cruising speed Vc 50 m/s
Min speed Vmin 40 m/s
Max speed Vmax 60 m/s

UAV: unmanned aerial vehicle.

Table 2. Parameters of the peak terrain.

Number Center
position
(x0, y0)

Altitude,
h (km)

Decline
scale along
x axis (xs)

Decline
scale along
y axis (ys)

1 (5, 4) 0.8 2 2
2 (11.5, 9) 1.5 3 3
3 (5, 16) 1.2 2.5 1.5
4 (15, 16) 0.7 2 1.5

Table 3. Parameters of wind field model.

Number Parameter Center position Unit

1 Center (6, 14, 0.8) km
Radius 1 km

2 Center (15, 12, 0.6) km
Radius 0.5 km

Table 4. Parameters of proposed CM-PIO.

Symbol Parameters Value

Nc1 max Max iteration for stage 1 100
Nc2 max Max iteration for stage 2 50
M Number of individuals on a population 50
D Dimension 9
(vmin, vmax) Range of evolution speed (–1.2, 1.2)

CM-PIO: Cauchy mutant pigeon-inspired optimization.

Table 5. Coordinates of start point and target point for each
UAV.

No. of UAVs Start point Target point Unit

UAV1 (0, 0, 0) (20, 19.8, 1) km
UAV2 (0, 2, 0) (19.8, 19.8, 1) km
UAV3 (0, 6, 0) (19.8, 20, 1) km

UAV: unmanned aerial vehicle.
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optimal paths of three UAVs, by PIO and CM-PIO. It
can be seen that CM-PIO can find the optimal path
faster and more excellent. Besides, the Cauchy mutant
could create the most optimal individual when the tra-
ditional PIO has fallen in to the local optimum.

Results of cooperative path planning strategy. It can be seen
in Figure 7 that without cooperative planning the path
of UAV2 and the path of UAV3 are close and have
intersection. To ensure the spatial requirement,

cooperative path planning is needed. Figure 8 shows
the fitness of optimal individuals changing with itera-
tion planned by CM-PIO cooperative planning strategy
and Figure 9 shows coordination coefficient fco chang-
ing with iteration. Table 6 shows the length of the
planned path with and without coordination planning.
Combining the above data it can be seen that proposed
CM-PIO cooperative path planning strategy could not
only meet the coordination requirements but also finds
optimal individuals with advanced fitness.

Conclusion

For the path planning problem of the UAV group in
plateau area, first the problem was modeled as a multi-

Figure 5. The paths planned by CM-PIO and PIO.

Figure 6. Fitness of optimal individual changing with iteration.

Table 6. Length of planned paths.

Number Plan without
cooperation (km)

Plan with
cooperation (km)

UAV1 30.765 30.765
UAV2 28.564 28.793
UAV3 24.614 26.004

UAV: unmanned aerial vehicle.

Figure 7. The paths with and without cooperative planning.

Figure 8. Fitness of CM-PIO cooperative plan changing with
iteration.

Figure 9. Coordination coefficients of three paths changing
with iteration.
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objective optimization problem and then CM-PIO
algorithm is designed to find the optimal path for each
UAV. Compared with the traditional PIO algorithm,
the result shows that the solution of proposed method
has better robustness. Finally, considering the spatial
constrain and temporal constrain of multi-UAV coop-
eration path planning problem, the CM-PIO coopera-
tion path planning strategy was designed. The
simulation results show the proposed method could not
only find optimal individuals with advanced fitness but
also meet the coordination requirements.
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