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Abstract. Aiming at the multiple Unmanned Aerial Vehicle (multi-UAV) task
assignment problems, a multi-UAV task assignment algorithm based on the
improved discrete pigeon-inspired optimization (PIO) algorithm is proposed con-
sidering various fitness functions and constraints. And a correction algorithm is
designed for the constraint overflow problem in the algorithm. First, a multi-UAV
task fitness function problemmodel is established with various benefits, costs, and
constraints. In addition, referring to the idea of the learning factor in the particle
swarm optimization (PSO) algorithm, the PIO algorithm is improved to strengthen
the learning ability of the pigeons for global and local optimal information. Then,
the improved PIO algorithm is discretized to fit the discrete task assignmentmodel.
Finally, aiming at the constraint overflow problem, a constraint check correction
algorithm is designed to correct the constraint overflow sequence. Simulation
experiments show that the improved discrete PIO algorithm can effectively solve
the multi-UAV task assignment problem.

Keywords: Multi-UAV task assignment · Discrete pigeon-inspired optimization
algorithm · Constraint overflow correction

1 Introduction

The UAV systems have been an active area of research for several decades. The main
application scenarios of the UAV systems include target reconnaissance, strike and dam-
age assessment in themilitary field and environmentalmonitoring, regional logistics, and
pesticide spraying in the civil field [1]. But there are some problems such as unbalanced
resource allocation and unsatisfactory task execution effect when the cluster performs
the task. To achieve the optimal execution effect under such circumstances, the collabo-
rative control of the UAV cluster is crucial, whose key problem is the Multi-UAV Task
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Allocation Problem (MTAP) [2]. MTAP refers to assigning multiple UAVs to multiple
targets to perform multiple tasks within the specified decision time. Through the inter-
nal coordination of the cluster, the best task execution effect is obtained [3]. Due to the
priority problem that needs to consider various constraints and costs during allocation,
this type of problem can be essentially classified as an NP-Hard problem [4].

Current research results on Multi-UAV task assignment can be summarized in a
variety of classical task models [5]. Among them, are the Multiple Traveling Sales-
man Problem (MTSP) model [6], Vehicle Routing Problem (VRP) model [7], Network
Flow Optimization model [8], Multiple Processors Resources Allocation model [9], etc.
According to the task architecture, task allocation problems can be divided into cen-
tralized problems and distributed problems [10]. The optimization algorithm, heuristic
algorithm, and distributed mixed-integer linear programming are used to solve task
assignment problems [11], among which the heuristic algorithm is the most focused
research direction. Heuristic algorithms mainly include genetic algorithm (GA) [12,
13], particle swarm optimization (PSO) algorithm [14–16], evolutionary algorithm (EA)
[17], simulated annealing (SA) algorithm, etc. The pigeon-inspired optimization (PIO)
is a new heuristic algorithm proposed by Professor Duan in 2014 [18]. It mainly imi-
tates the behavior of homing pigeons using geographic information for guidance for fast
optimization. Due to its high computational efficiency and fast convergence, it has been
widely applied in various fields, such as low-altitude UAV target detection problem [19],
spacecraft optimal formation reconstruction problem [20], etc. At the same time, some
scholars have proposed many improved PIO algorithms to solve the problems arising in
the application process. For example, the PIO algorithm combined with Cauchy vari-
ation, variable weight mutation PIO algorithm [21], quantum updating PIO algorithm
[21], etc.

In this paper, the PIO algorithm is improved by the learning factors in the PSO,which
improve the optimization efficiency of the algorithm and strengthen the global search
ability of PIO in the first stage and the convergence ability of landmark information in
the second stage. At the same time, the PIO algorithm is discretized to fit the discrete
task assignment model. Aiming at the constraint overflow problem, a constraint check
correction algorithm is designed to correct the constraint overflow sequence.

2 Multi-UAV Task Assignment Model

2.1 Description of Task Assignment Problem

There are Nu UAVs in a two-dimensional space divided into reconnaissance UAVs and
attack UAVs, and Nt task target points in this space, whose number of tasks is Nm.
These tasks are divided into two types: reconnaissance and strike tasks. Existing task
requirements: The number of tasks performed by each UAV must not exceed its task
constraint. The execution time of a single strike task is 10 s, and the reconnaissance task
is 50 s. The strike mission must be performed after all the reconnaissance tasks have
been carried out. The final assignment plan should have the highest profit and the lowest
cost.
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2.2 Multi-UAV Task Fitness Function Modeling

To balance various task constraints, benefits, and costs in the process of multi-UAV task
assignment, a multi-UAV task assignment model is established. First, the mathematical
models of theUAVand the task target are established based on their physical performance
parameters. Ideally, the UAV is seen as a particle and travels at a constant speed Vu.
Finally, the multi-UAV task fitness function model is established which consists of task
profits, task costs, and task constraints. The modeling process is as follows:

Themulti-task profitsFprofit are divided into reconnaissance profitsFr_profit and strike
profits Fs_profit . Both of them are determined by the UAV’s performance characteristics
and the reconnaissance or strike value of the target point corresponding to the UAV.

The multi-task costs Fcost are divided into distance costs Fdistance and time costs
Ftime. Both of them are determined by the location of the UAVs and the task target
points. In addition, the time costs Fcost need to consider the task execution time.

The task constraints are divided into strike ammunition Iammo constraints and tasks
executed constraints Itask . Iammo relates to the task ammunition. When the amount of
ammunition carried by the task’s correspondingUAVmeets its ammunition task demand,
record 1, otherwise record 0. Itask relates to the task number. When the number of its
tasks meets its demand, record 1, otherwise record 0.

The expression of the overall function is as follows:

Ftotal = Iammo · Itask · (tprofit · Fprofit + tcost · Fcost) (1)

where tprofit , tcost are the correspondingweighting factors. Since the optimization process
is the process of finding the minimum value, the profit weight factor tprofit is negative.

3 Discrete Pigeon-Inspired Optimization Algorithm Combined
with Learning Factors

3.1 Pigeon-Inspired Optimization Algorithm Combined with Learning Factors

The standard PIO algorithm mainly imitates the learning behavior of pigeons to geo-
graphical information when they return to the nest. Professor Duan referred to the behav-
ior and proposed the Pigeon-inspired Optimization algorithm. PIO algorithm takes the
position information X(k) and velocity information V (k) as the iterative target, and iter-
ates the pigeons’ information in two stages using the map and compass operator and
landmark operator, so that it has a fast convergence speed and is applied to a variety of
scenarios.

Learning factors in the particle swarm optimization (PSO) algorithm regulates the
learning process of global information and local information which is used to enhance
the global search ability and convergence ability of the PIO algorithm.

The first stage equation of the PIO algorithm combined with learning factors is as
follows:

V (k + 1) = e−Rk · V (k) + C1 · rand1 · (Xgbest(k) − X (k))

X (k + 1) = X (k) + V (k + 1)

C1(k + 1) = C1(k) − e1 · k

Nk1max

(2)
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where k is the current iteration number, e−Rk is the map and compass operator, Xgbest is
the current global optimal solution, and rand1 is a random value on the interval [0,1],
controlling the learning of the algorithm to the current global optimal solution. C1 is the
global learning factor, where e1 is the linear change factor, and Nk1max is the maximum
number of iterations in the first stage. The C1 has a large value in the early iterations
of the stage so that the learning ability to the global information is strong. With the
increase in the number of iterations, the value of the C1 gradually decreases and the
decreasing speed gradually accelerates. These indicate that the global search ability
decreases gradually in the late iteration of the first stage.

Through (2) can get the current velocity information of the pigeons and update their
location information, so that the pigeons can develop to the optimal pigeon.

The second stage equation of PIO combined with the learning factors is as follows:

Np(k + 1) = Np(k)

2

Xc(k) =
∑

Xi(k) · Ftotal(Xi(k))

Np(k)
∑

Ftotal(Xi(k))

Xi(k + 1) = Xi(k) + C2 · rand2(CXc · (Xc(k) − Xi(k)) + CXP · (Xipbest(k) − Xi(k))

C2(k + 1) = C2(k) + e2 · k − Nk1max

Nk2max
(3)

The first equation of Eq. (3) represents the pigeons’ elimination behavior, which
means that half of the pigeons with high fitness values are eliminated in each iteration of
the second stage. In the second equation, Xc(k) is the central landmark of the pigeons,
and then the location information of the pigeons is updated through the third equation.
In the third equation, CXC and CXP are the landmark optimization weight factors, that
are given at the beginning of algorithm iteration to regulate the learning of landmark
information and local optimal information. C2 is the local optimization learning factor,
whose principle is contrary to C1. The value of C2 increases with the increase of the
number of iterations, and the growth rate is gradually accelerated, which indicates that
the local learning ability of the algorithm is gradually enhanced in the latter iteration,
the optimization efficiency is high, and the convergence speed is fast.

3.2 Algorithm Discretization

Discrete Coding of Individual Pigeons
Because the task assignment problem model is a discrete model and the PIO is a contin-
uous solution algorithm, the improved PIO algorithm should be discretized to solve this
problem. The first step is the discrete coding of individual pigeons. Two sequences, UAV
departure sequence vehicle, and task target sequence target are employed to encode indi-
vidual pigeons. In an individual coding sequence, a set of tasks is represented by an array
composed of a UAV serial number and its corresponding task target point serial number.
Its task execution order is represented by the position of the array in the individual coding
sequence, and the coding example is shown in Table 1.
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Table 1. Discrete coding example of pigeons

vehicle 1 2 3 1 3

target 8 9 6 7 3

PIO Algorithm Discretization
The discrete PIO algorithm is also divided into two stages, whose main idea is to iterate
the sequences of the pigeons. According to this idea, the operators in the continuous
algorithm are discretized into cross-learning operations of sequence information.

The resultC1·rand1 in the first stage is a value on the interval [0,1], which represents
the pigeon’s learning degree of the global optimal value of the pigeons Xgbest(k). Com-
bined with the actual problem, the multiplication operation of two numbers is defined as
the crossing operation with thresholds C1 and probability rand1 in a discrete problem.
First, generate a random number rand1 on [0,1] when iterating on the ith pigeon’s Xi(k)
in the kth iteration. If rand1 < C1, generate two different random integers a and b (a <

b, b-a < 10·C1) in the interval [1, Nt]. Then, cross the information which is between
the ath position and the bth position of the two sequences target and vehicle belong
to the Xi(k) and the information in the corresponding position of global optimal value
Xgbest(k). If rand1 ≥ C1, no operation is performed. Through the above operations, the
initial iteration position information Xi

mid(k + 1) is obtained. The specific operation
mode is shown in Fig. 1 (a).

Fig. 1. (a) Operation of discrete PIO for the global optimal sequence in the first stage. (b)
Operation 2 of discrete PIO for the global optimal sequence in the first stage

In e−Rk ,R is themapandcompass factor.With the increase in the number of iterations,
the pigeon’s inertia will decrease and gradually converge to the local range. Combined
with the actual problem, this operation is defined as an inheritance behavior with the
thresholds e−Rk and the probability randR. randR is a random number on [0,1], and e−Rk

changes with the number of iterations. If randR < e−Rk , generate two different random
integers d1 and d2 on the interval [1, Nt]. Then, cross the information of the vehicle or
target sequence which is in the d1th position and the d2th position. If randR ≥ e−Rk ,
no operation is performed. The position information of iteration Xi(k + 1), (k + 1 <

Nk1max) in the first stage is obtained through the above operations. The specific operation
mode is shown in Fig. 1 (b).
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According to Eq. (3), the iteration in the second stage of the PIO algorithm is
mainly the fast convergence landmark information learning iteration. (Among which
the pigeons’ iteration k satisfies Nk1max < k ≤ Nk2max) The current pigeons are sorted in
descending order of fitness value from high to low, and the median value of the current
population Np_mid(k) and fitness value of individual pigeons Ftotal_mid(k) correspond-
ing to this address are calculated at the same time. Then the pigeonswhose fitness value is
higher than the current median fitness value are eliminated. Then, the new generation of
pigeonsNp(k + 1) is got. Then calculate the landmark information of the current pigeons
and conduct local optimization. Combined with practical problems, the landmark center
of the current pigeons is discretized, and its calculation equation is as follows:

Xc(k)_j =
∑Np(k)

i=1 Xi(k)_j

Np(k)
, 1 ≤ j ≤ Nv (4)

The idea of pigeons’ iteration in the second stage is similar to the first stage. The
operation is defined as a cross operation with the thresholds C2 and probability rand2.
Perform the same cross operation as in the first stage for theXi(k) sequence and theXc(k)
sequence to obtain the sequence Xi(k + 1)_1. Next, do the same operations between
Xi(k) and the local optimal value Xipbest(k) to obtain the sequence Xi(k + 1)_2. Finally,
calculate and compare the fitness value of the two sequences: Xi(k + 1)_1 and Xi(k
+ 1)_2, output the lower value sequence as Xi(k + 1). If rand2 ≥ C2, no operation
is performed. The position information Xi(k + 1) of iteration in the second stage was
obtained through the above operations.

3.3 Constraint Check Correction Algorithm

Due to the common random search process of heuristic algorithms, the sequence output
by the discrete PIO algorithmmay overflow constraints during searching iteration, which
needs to be corrected. The correction algorithm is shown in Fig. 2.

Start
End

The constraint 

judgment factor 

is abnormal

Output the 

sequence

No

For i Nt

Yes

Store the UAV and 

its ID address in 

the U_normal.

Store the 

corresponding 

target in the 

T_normal.

Store the UAV 

information in 

the 

U_abnormal.

Store the 

corresponding 

target  in the 

T_abnormal.

YesNo

The i UAV 

satisfies the 

constraint

Reallocate  

U_abnormal 
and 

T_abnormal.

Combine 

with the 

U_normal
and

T_normal.

No

Yes

Fig. 2. Flow chart of constraint check correction algorithm
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The main idea of the correction algorithm is to check the pigeon’s sequence and
store the normal information and abnormal information in the corresponding array. Then
reallocate the abnormal array and combine it with the normal array.

4 Simulation

Based on the above algorithm design, simulation experiments are carried out in the
simulation environment of matlab2021a software, Intel11 generation i5 processor, and
8GB processing memory.

In amulti-task environment of 50 km*50 km, there are 10 UAVs and 10 target points.
The UAVS consist of 5 reconnaissance UAVs and 5 strike UAVs. Each target point must
be carried out with a reconnaissance task and a strike task. Each UAV has its task number
constraint. Each UAV flow at a speed of 50 m/s. Other UAV performance parameters are
shown in Table 2.

Table 2. UAV performance parameters

Number 1 2 3 4 5 6 7 8 9 10

Location 1,10 1,20 1,30 1,40 1,50 10,1 20,1 30,1 40,1 50,1

Rec 10 10 10 10 10 0 0 0 0 0

Ammo 0 0 0 0 0 10 10 10 10 10

R-coefficient 0.9 0.85 0.80 0.75 0.70 0 0 0 0 0

S-coefficient 0.9 0.85 0.80 0.75 0.70 0.90 0.85 0.80 0.75 0.70

constraint 2 2 1 3 3 2 2 2 3 3

The performance parameters of the task target point are shown in Table 3.

Table 3. Performance parameters of the task target point

Number 1 2 3 4 5 6 7 8 9 10

Location 10,40 10,30 20,20 30,28 31,43 45,47 40,35 25,10 45,5 40,22

Rec
demand

5 5 5 5 5 5 5 5 5 5

Strike
demand

5 5 5 5 5 5 5 5 5 5

Rec
profit

41.2 31.6 28.2 41.0 53.0 65.1 53.1 26.9 45.2 45.6

Strike profit 53.6 41.1 36.7 53.3 68.9 54.6 69.1 35.0 58.8 59.3
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Algorithm internal parameter: Np = 400, Nk = 20, Nk1max = 12, Nk2max = 8, C1(0)
= 0.95, e1 = 0.012, C2(0) = 0.35, e2 = 0.012, CXC = CXP = 0.5, tprofit = 0.6, tcost =
0.4.

The optimal task sequence output by the algorithm is shown in Table 4, and the
simulation diagrams are shown in Fig. 3.

Table 4. Optimal task sequence

UAV Task plan (target point, location, time point, task type) Task time

1 [(1,10), 0] → [ 2 (10,30), 488.63, Rec] 1

2 [(1,15), 0] → [ 9 (45,5), 952.44, Rec] →
[ 5 (31,43), 1812.40, Rec]

2

3 [(1,20), 0] → [ 7 (40,35), 885.70, Rec] 1

4 [(1,25), 0] → [ 1 (10,40), 399.85, Rec] →
[ 3 (20,20), 897.07, Rec] → [ 4 (30,28), 1203.21, Rec]

3

5 [(1,30), 0] → [ 6 (45,47), 993.39, Rec] →
[ 8 (25,10), 1884.61, Rec] → [ 10 (40,22), 2318.81, Rec]

3

6 [(10,1), 0] → [ 1 (10,40), 2790.12, Strike] →
[ 2 (10,30), 3000.00, Strike]

2

7 [(15,1), 0] → [ 9 (45,5), 2615.31, Strike] →
[ 8 (25,10), 3037.62, Strike]

2

8 [(20,1), 0] → [ 7 (40,35), 2798.91, Strike] →
[ 5 (31,43), 3049.84, Strike]

2

9 [(25,1), 0] → [ 3 (20,20), 952.44, Strike] →
[ 4 (31,43), 1812.40, Strike]

2

10 [(1,15), 0] → [ 6 (45,5), 2402.92, Strike] →
[ 10 (30,28), 2669.12, Strike]

2

Table 4 shows the number of tasks performed by each UAV, the location informa-
tion, time point information, and mission target point information when the tasks were
performed. As can be seen from Table 4, all strike tasks are executed after all reconnais-
sance tasks have been completed. At the same time, the number of tasks performed by all
UAVs did not exceed their task number constraints. Figure 3(b) shows that in the early
stage of the algorithm, the fitness value decreases rapidly, and its global optimization
effect is better in the first stage. The first stage ends at the 12th generation and trans-
fers to the second stage. The fluctuation of the local optimization in the second stage is
small, indicating that the algorithm has approached the optimal solution of the problem
in the first stage, and the local search for a better situation in the second stage. The task
execution sequence of the task point is shown in Fig. 3(c), and the simulation of the task
environment is shown in Fig. 3(d). It can be seen from the figure that each task point has
executed two tasks, and there is no time conflict between the two tasks, which conforms
to the task point constraints.
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(a) (b)

(c) (d)

Fig. 3. (a) Two-dimensional environment simulation (b) fitness function optimizing curve (c)
Task point Task execution sequence diagram (d) Multi-task environment simulation

The algorithm comparison results are shown in Fig. 4. The genetic algorithm(GA)
and the PSO algorithm are chosen to compare with the improved PIO algorithm. The
above algorithms are used to carry out comparative experiments on the task models with
task numbers 20, 16, 12, and 8 respectively. The results show that the improved PIO
algorithm has a faster optimization speed and better results.

Fig. 4. (a) Algorithm time comparison result (b) Algorithm fitness comparison result
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5 Conclusion

Aiming at the typical multi-UAV task assignment problem, considering various costs
and constraints, a multi-task fitness function model is established. To enhance the global
search ability of the algorithm, a discrete PIO algorithm combined with a learning factor
is proposed, At the same time, a constraint check correction algorithm is designed to
correct the constraint overflow problem of the heuristic algorithm. The simulation results
show that the proposed algorithm has a good solution effect on this kind of task model,
and at the same time meets the task constraints.
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