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Abstract This paper presents the novel use of pigeon-
inspired optimization (PIO) to generate the constrained
gliding trajectory for hypersonic gliding vehicles. The
velocity-dependent bank angle profile is developed in a
quite simple formulation in order to reduce the search-
ing space of the trajectory control command. The end-
to-end trajectory and maximum-range trajectory are
obtained by the enforced PIO algorithm which serves
as an effective tool to deal with the typical path con-
straints and terminal conditions. Further, the forward
and backward reversal logic is proposed to construct
approximate footprints that can provide a fast decision
in themission deployment for nominal flights and abort
situations. Numerical simulations demonstrate that the
improved PIO algorithm is feasible and reliable to gen-
erate the constrained gliding trajectory for hypersonic
gliding vehicles.

Keywords Pigeon-inspired optimization (PIO) ·
Constrained trajectory optimization ·Gliding vehicles ·
Velocity-dependent bank angle · Forward and
backward reversal logic
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1 Introduction

The global space transportation has spurred a great
interest in hypersonic gliding vehicles for both civil-
ian and military applications. The need for a reliable
and efficient access to the space is promoting a rapid
development of the gliding trajectory optimization and
guidance techniques [1–4]. In the last decade, the
progress has been witnessed by a series of experimen-
tal successes such as the DARPA’s Falcon HTV, which
demonstrates the great capability of flight inspection
and data analysis [5].

The reference flight trajectory is a key component of
themission deployment for the reentry gliding vehicles
[6]. Therefore, the reference trajectory design plays
an important role in steering a reliable and safe reen-
try gliding flight. Generally, the reference trajectory is
generated offline and preloaded on the gliding vehicle
before its launching. Then, the gliding vehicle enters
the atmosphere of the Earth at an altitude of about 80–
100 kmand the full gliding trajectory typically expands
to the range of the terminal area an altitude of about 20–
30km [7–10]. It is a challenging task to design the refer-
ence trajectory for reentry gliding vehicles, because the
three degree-of-freedom (3DOF) dynamics is highly
nonlinear with limited control authority [11]. In addi-
tion, the gliding vehicle must subject to many path con-
straints in the complex environment such as the heating
rate, dynamic pressure, and aerodynamic load [12–14].

In the current literature, three typical classes of
approaches have been applied to the design of the
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constrained gliding trajectory for the reentry gliding
vehicles. The first type uses a reduced-order model to
reduce the complexity of the optimal control problem
[15]. Saraf et al. [16] presented the evolved accelera-
tion guidance logic for entry (EAGLE) that consists of
a trajectory planner to generate the atmospheric reen-
try gliding trajectory. Then, Leavitt et al. [17] made an
extension of EAGLE to generate trajectories to most
of the landing footprint, in which the feasible and opti-
mal trajectories use the drag planning technique for the
space shuttles. In addition, Guo et al. [18] obtained the
drag acceleration-energy profile by using the interpo-
lation between the upper and lower boundaries of the
reentry corridor to generate the reentry gliding trajec-
tory on board.

The second type employs the quasi-equilibrium
glide phenomenon for lifting gliding vehicles. Shen
et al. [19] proposed the quasi-equilibrium glide con-
dition (QEGC) to generate the constrained gliding tra-
jectory for reentry vehicles. The trajectory design is
decomposed into two sequential one-parameter search
problems. Then, Lu [20] presented a formal analy-
sis to QEGC and obtained solutions in asymptotic
expansions by a class of regular perturbation prob-
lems. On the basis of the QEGC, Ning et al. [21]
also developed a new integrated guidance approach
for reentry gliding vehicles which contains the online
trajectory generator and guidance tracking controller.
In addition, Xu et al. [22] employed the predictor-
corrector principle and proposed an adaptive algorithm
by means of QEGC to generate the gliding trajec-
tory.

The third class of approaches adopts the direct tra-
jectory optimization technique, in which the gliding
trajectory design is performed by using pseudospectral
methods. Zhao et al. [23] used the Gauss pseudospec-
tral method to transcribe optimal control problem into
the nonlinear programming problem by approximating
the state and control at a set of discretization points.
Then, Han et al. [24] proposed an hp-adaptive Radau
pseudospectral method to generate the reentry glid-
ing trajectory in order to increase the convergence rate
as well as the computation accuracy. Guo et al. [25]
employed amappedChebyshevpseudospectralmethod
to the gliding trajectory optimization, in which a con-
formal map is applied to Chebyshev points to move the
points closer to equidistant nodes. Further, Zhao et al.
[26] developed a multistage trajectory control strategy
based on the pseudospectral method including the tra-

jectory estimation component and the trajectory refin-
ing component.

In this paper, the pigeon-inspired optimization (PIO)
algorithm is used to generate the desired gliding trajec-
tory for reentry gliding vehicles in a quite simple for-
mulation. The goal of this paper was to present a new
approach for solving a typical optimal control problem
with a swarm intelligencemethod and avoiding the cal-
culations required in common analytical approaches.
This is accomplished by using an existing solution for a
specific problem and then finding the simplified formu-
lation to obtain other possible trajectories. The contri-
bution of the paper is described as follows: (1) the basic
PIO algorithm is enforced to deal with the equality and
inequality constraints for typical trajectory optimiza-
tion problem; (2) two kinds of the velocity-dependent
bank angle profiles are developed to reduce the search
space of the trajectory control command; and (3) a set
of the reversed bank commands is generated by the for-
ward and backward reversal logic in order to fast con-
struct the approximate footprints. The paper is orga-
nized as follows. In Sect. 2, the trajectory dynamics
and trajectory constraints of the reentry gliding vehicle
are presented. In Sect. 3, the basic PIO algorithm and
its improved version are introduced. Section 4 expati-
ates on the generation of the constrained gliding trajec-
tory by using the improved PIO algorithm. The feasi-
ble applications of the proposed approach are demon-
strated in Sect. 5. Finally, the concluding remarks are
presented in Sect. 6.

2 Preliminary

2.1 Trajectory dynamics

The 3DOF point-mass dynamics of the reentry gliding
vehicle over a spherical rotating Earth are given by the
following equations of motion [6]

ṙ = V sin γ

θ̇ = V cos γ sinψ

r cosφ

φ̇ = V cos γ cosψ

r

V̇ = −D

m
− g sin γ + Ω2r(sin γ cosφ

− cos γ sin φ sinψ) cosφ

γ̇ = L cos σ

mV
− g cos γ

V
+ V cos γ

r
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+ Ω2r cosφ(cos γ cosφ + sinψ sin φ sin γ )

V
+ 2Ω cosφ cosψ

ψ̇ = L sin σ

mV cos γ
− V cos γ cosψ tan φ

r

− Ω2r sin φ cosφ cosψ

V cos γ

+ 2Ω(tan γ cosφ sinψ − sin φ) (1)

where r is the radial distance, θ and φ are the longitude
and latitude, V is the Earth-relative velocity, γ and ψ

are the flight-path angle and heading angle, σ is the
bank angle, m is the mass of the vehicle, and Ω and g
are the Earth angular velocity and gravitational accel-
eration. The aerodynamic drag force D and lift force L
are described as

D = 1

2
ρV 2CDSr

L = 1

2
ρV 2CL Sr (2)

where Sr and ρ are the reference area and atmospheric
density, respectively. The termsCD andCL are the drag
and lift coefficients as functions of the angle of attack
α and Mach number.

2.2 Trajectory constraints

The reentry gliding vehicles have allowable limits for
maximum heating rate, dynamic pressure, and aerody-
namic load. The typical constraint on the heating rate
at the vehicle surface is given by [19]

Q̇ = KQρ0.5V 3.15 ≤ Q̇max (3)

where KQ is a normalization constraint based on the
heating model. The aerodynamic load is a hard con-
straint on the normal acceleration which is described
as [19]

nL =
√
L2 + D2

/
mg0 ≤ nLmax (4)

where g0 is the gravitational acceleration at the Earth
surface. The dynamic pressure must also not exceed
the limit of the vehicle’s mechanical protection. It is
constrained according to the following model as [19]

q = 1

2
ρV 2 ≤ qmax (5)

In general, different terminal conditions are selected
according to specified flight missions. The typical ter-
minal conditions on the altitude, longitude, latitude,
and velocity are given in terms of [6]

r f = r∗
f , θ f = θ∗

f , φ f = φ∗
f , V f = V ∗

f (6)

where the subscript “ f ” denotes the terminal state
and the superscript “*” represents the desired termi-
nal states.

2.3 Problem formulation

Subject to the 3DOF equations of motion, the pur-
pose of the gliding trajectory optimization is to find
the control profiles such that the desired constrained
gliding trajectories (e.g., the end-to-end trajectory and
maximum-range trajectory) can be generated, mean-
while satisfying all the trajectory path constraints and
trajectory terminal conditions. The gliding trajectory
optimization for reentry vehicles is traditionally for-
mulated as the optimal control problem in which the
specific performance index is required. However, it is
usually time-consuming to obtain an optimal gliding
trajectory in the presence of numerous nonlinear equa-
tions of motion and nonlinear constraints. In this paper,
we will simplify the control profiles so as to reduce
the unknown parameters in the gliding trajectory opti-
mization. The PIO algorithm is applied to design the
constrained gliding trajectory by consideration in its
simple structure and fast convergence rate. The subop-
timal gliding trajectory and approximate footprint are
generated by considering that a trade-off between the
optimal solution and the complexity may improve the
overall performance of gliding mission planning.

3 PIO algorithm with enforced constraints

The basic PIO algorithm and its improved version are
introduced in this section. The PIO algorithm is one of
the swarm intelligence methods that take the original
inspiration from the natural phenomena [27]. It mim-
ics the motion of a flock of pigeons when they find
their home by using the magnetic field, the sun, and
landmarks. As a population-based optimization tool,
the PIO algorithm has a main strength that each pigeon
uses the experience of the whole flock in the search
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1784 J. Zhao, R. Zhou

space rather than only the experience of its own. The
PIO algorithm consists of two individual operators: (1)
the map and compass operator; (2) the landmark oper-
ator [28]. To be specific, a flock of pigeons first shape
the map by using the magnetic field and adjusting the
direction according to the altitude of the sun. Then, they
will fly close to the destination by using the landmarks
neighboring them.

In the basic PIO, the population is described by N
pigeons in total. The dimension of the problem to be
solved is defined as n. Each pigeon in the flock repre-
sents a possible solution and corresponds to a specific
value of the fitness function. The number of iterations
in the PIO algorithm is NITER. The initial set of the
pigeons is randomly selected in the searching space.
The pigeon k is associated with a position vector X (k)
and a velocity vector V (k) in the form of

X (k) = [x1(k), x2(k), . . . , xn(k)], (k = 1, 2, . . . , N )

(7)

V (k) = [v1(k), v2(k), . . . , vn(k)], (k = 1, 2, . . . , N )

(8)

In the map and compass operator, all the pigeons try
to adjust and follow the best position in the flock. The
position vector X (k) and the velocity vector V (k) are
updated by the following equations [27]:

V (t)(k) = V (t−1)(k) · e−Rt + rand

·
(
P(t−1) − X (t−1)(k)

)
(9)

X (t)(k) = X (t−1)(k) + V (t)(k) (10)

where t is given iteration, R represents the map and
compass factor that influences the velocity of each
pigeon, P(t−1) denotes the best position in the pigeon
flock, and rand is a random number within [0, 1].

In the landmark operator, half flock of the pigeons
(they are away from the landmarks) is driven to follow
the other half (they are close to the landmarks). The
selected half of pigeonswill guide thewholeflock to the
destination. The center of these pigeons can be obtained
by [27]

C (t) =
∑

NP
X (t)(k) · fitness (

X (t)(k)
)

∑
fitness

(
X (t)(k)

) (11)

where fitness (·) reflects the objective function of the
problem and NP is the number of pigeons in the current

iteration. As mentioned above, it is updated in the form
of

N (t)
P = 1

2
N (t−1)
P (12)

Thus, in this landmark operator, the position vector is
manipulated by the following equation:

X (t)(k)= X (t−1)(k) + rand ·
(
C (t) − X (t−1)(k)

)
(13)

The basic PIO algorithm (7–13) has been proven to be
a reliable tool to solve the flight-path planning problem
[27,28]. However, it is difficult to deal with the glid-
ing trajectory optimization problem that includes many
path constraints and terminal conditions. Therefore, the
basic PIO algorithm should be enforced and expand its
further application to complex parameter optimization
problem.

First, the components in each possible solution (i.e.,
the unknown parameters) in the PIO algorithm will be
constrained in respective ranges. To be specific, the
position component is bounded as follows:

ai ≤ x (t)
i (k) ≤ bi , (i = 1, 2, . . . , n) (14)

where ai and bi are given constants. The corresponding
velocity vector should also be limited to suitable range;
otherwise, the update of the map and compass operator
would violate the constraint (14). It has the expression
in the form of

−di ≤ v
(t)
i (k) ≤ di , di � bi − ai , (i = 1, 2, . . . , n)

(15)

Thus, the following rules are derived for the update laws
(9–10), which can guarantee that the position vector
X (k) and the velocity vector V (k) are constrained by
(14–15)

(a) If v
(t)
i (k) < −di ⇒ v

(t)
i (k) = −di .

(b) If v
(t)
i (k) > di ⇒ v

(t)
i (k) = di .

(c) If x (t)
i (k) < ai ⇒ x (t)

i (k) = ai and v
(t)
i (k) = 0.

(d) If x (t)
i (k) > bi ⇒ x (t)

i (k) = bi and v
(t)
i (k) = 0.

Next, the equality and inequality constraints will
be involved in the PIO algorithm in order to meet the
requirement of gliding trajectory optimization. Taking
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Pigeon-inspired optimization applied to constrained gliding trajectories 1785

position vector X (k) into consideration, the typical for-
mulations of the equality and inequality constraints are
described as

ϕp (X (k)) = 0, (p = 1, 2, . . . ,mp) (16)

λq (X (k)) ≤ 0, (q = 1, 2, . . . ,mq) (17)

where mp and mq are the numbers of the equality and
inequality constraints, respectively.

With regard to the equality constraints, many swarm
intelligencemethods use the popular solution by adding
penalty terms to the fitness function. It is also employed
in this paper. The fitness function consists of the basic
objective function J0 and the equality constraints (16)
in the form of

fitness (X (k)) = Jmin = J0 +
m∑

p=1

wp
∣
∣ϕp (X (k))

∣
∣

(18)

where wp ≥ 0 are the weight coefficients. Note that
the selection of the weights wp depends on the actual
parameter optimization problem.

With regard to the inequality constraints, the prob-
lem is less intractable, although they narrow the search-
ing space of the feasible solutions. Since the inequality
constraints do not decrease the degree of freedom of
the optimization problem, a quite simple approach is
used herein by setting the fitness function to an infinite
value when some member in the pigeon flock violates
any inequality constraint. To be specific, the following
rule is derived to satisfy the constraint (17)

(e) If λq (X (k)) > 0 ⇒ fitness (X (k)) = ∞ and
V (k) = 0.

In the rule above, the related velocity vector is
also set to zero such that the flock of pigeons would
not be affected by the velocity update when some
inequality constraint is violated. The other generic
steps of the iterations are similar to the basic PIO
algorithm.

4 Gliding trajectory optimization

4.1 Outline

The trajectory control commands for reentry gliding
vehicles consist of the angle of attack and the bank
angle. Generally, the nominal angle of attack profile is
applied to the design of gliding trajectory, because it is

difficult for reentry gliding vehicles to adjust the angle
of attack in full range. Therefore, the bank angle profile
is typically enhanced for higher maneuverability and
desired gliding trajectory.

In the following, the first part focuses on the design
of the nominal angle of attack profile and the para-
meterized bank angle profile. Then, the 3DOF end-to-
end trajectory and maximum-range trajectory are gen-
erated by using the PIO algorithm. At last, the forward
and backward reversal logic is incorporated into the
velocity-dependent bank angle profile to fast obtain
the approximate landing footprint for reentry gliding
vehicles.

4.2 Control profile design

The end-to-endmissionplanning from the reentry inter-
face to the termination of the gliding phase is impor-
tant to reentry gliding vehicles. Regarding a complete
gliding trajectory, the angle of attack profile is usu-
ally determined by consideration in thermal protection,
since the heating rate may reach the peak value at the
beginning of the gliding phase. Herein, the nominal
angle of attack profile is formulated as the monotonic
function of the velocity

α(V ) =
{

α0, V ≥ Vα

α0 − Kα(V − Vα)2, V < Vα

(19)

whereα0 is the initial angle of attack, Vα is the specified
critical velocity, and Kα > 0 is a given constant. The
typical illustration of the nominal angle of attack profile
can be seen in Fig. 1.

In order to simplify the trajectory optimization prob-
lem, this part focuses on the design of the bank angle.

Fig. 1 Illustration of the nominal angle of attack profile
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1786 J. Zhao, R. Zhou

Fig. 2 Illustration of the
velocity-dependent bank
angle profiles

As shown in Fig. 2, the parameterized control pro-
files are developed to reduce the searching space of
the optimal bank angle. The main idea is derived from
the baseline bank reversal that is similar to the Apollo
entry guidance. Two kinds of the velocity-dependent
profiles are employed in quite simple forms like one

bank reversal and two bank reversals. The formulation
of the parameterized bank angle profiles is delineated
in the following.

First, the expression of the velocity-dependent pro-
files with the shape of one bank reversal is given by the
following equation:
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σ(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

σ0, V > V1

σ0 + V−V1
V2−V1

(σ1 − σ0), V2 < V ≤ V1

σ1, V ≤ V2
(20)

where V1 and V2 are the critical velocities, σ0 is the
initial bank angle, and σ1 is the constant terminal bank
angle. In detail, a constant bank angle σ0 is used, dur-
ing the initial descent phase, to integrate the 3DOF
dynamics until the velocity decreases to V1. To meet
the requirement of the interface between gliding phase
and terminal area energymanagement (TAEM), the ter-
minal bank angle is set to be another constant value σ1
as the critical velocity V2 is reached. The bank angle
profile is linear when the velocity stands between V1
and V2.

Further, additional rules are derived to specify the
design of the bank angle profile according to the geom-
etry of lateral gliding trajectory as shown in Fig. 2.
Let �ψ represents the difference between the vehicle
azimuth ψ0 and the line-of-sight ψT from the vehicle
to the target, the constant terminal bank angle in (20)
can be determined by the following rules:

(f) If �ψ = ψ0 − ψT > 0 ⇒ σ1 > σ0, σ1 > 0.
(g) If �ψ = ψ0 − ψT < 0 ⇒ σ1 < σ0, σ1 < 0.

Similarly, the expression of the velocity-dependent
profile with the shape of two bank reversals can be
given by the following equation:

σ(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ0, V > V1

σ0 + V−V1
V2−V1

(σ1 − σ0), V2 < V ≤ V1

σ1, V3 < V ≤ V2

σ1 + V−V3
V4−V3

(σ2 − σ1), V4 < V ≤ V3

σ2, V ≤ V4
(21)

where V1, V2, V3 and V4 are the critical velocities, σ0
is the initial bank angle, and σ1 and σ2 are the constant
bank angles to be determined. Then, considering the
geometry of lateral gliding trajectory, rules can also be
derived to design the parameterized bank angle profile:

(h) If�ψ = ψ0−ψT > 0 ⇒ σ1 > σ0, σ1 > 0, σ2 <

0.
(i) If�ψ = ψ0−ψT < 0 ⇒ σ1 < σ0, σ1 < 0, σ2 >

0.

Based on the above formulation, it is easy to obtain
the optimal control profile as well as the desired glid-
ing trajectory by searching the constant terminal bank
angles and the critical velocities. Although the design
of the velocity-dependent bank angle profile is differ-
ent in approach from the baseline bank reversal, it is
equally satisfactory in result.

4.3 Objective function and trajectory constraints

Assume that the nominal angle of attack profile and
the initial bank angle are given in advance, the main
goal of the optimization problem is to determine the
parameters (σ1, V1, V2) in the profile (20) or the para-
meters (σ1, σ2, V1, V2, V3, V4) in the profile (21). To
meet the requirement of the 3DOF end-to-end gliding
trajectory and maximum-range gliding trajectory, this
part presents the formulation of the fitness function as
well as guaranteed satisfaction of trajectory path con-
straints and terminal conditions.

Asmentioned in the previous section, both the objec-
tive function and the equality constraints can be gener-
ally incorporated into the fitness function. Therefore,
the trajectory terminal conditions (6), which are in
the basic form of equality constraints, can be solved
by adding penalty terms to the fitness function. With
regard to the end-to-end gliding trajectory, the fitness
function that consists of the objective function and ter-
minal constraints has the typical expression as

fitness (X (k)) = Jmin = J0 + w1

∣
∣
∣r f − r∗

f

∣
∣
∣

+w2

∣
∣
∣V f − V ∗

f

∣
∣
∣ + w3

∣
∣
∣θ f − θ∗

f

∣
∣
∣

+w4

∣
∣
∣φ f − φ∗

f

∣
∣
∣ (22)

where wp ≥ 0 (p = 1, 2, 3, 4) are the weight factors
related to the trajectory terminal conditions (6). The
selection of the objective function J0 usually depends
on specified requirement such as minimum total heat
load. In the same way, the following fitness function
canbe obtained to generate themaximum-range gliding
trajectory

fitness (X (k)) = Jmin = 1

S f
+ w1

∣
∣
∣r f − r∗

f

∣
∣
∣

+w2

∣
∣
∣V f − V ∗

f

∣
∣
∣ (23)

where S f represents the terminal crossrange of the con-
strained gliding trajectory.
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Table 1 Pseudocode of the
proposed algorithm 1: //Initialization

2: Set the parameters of the algorithm: n, N , NITER, R, ai , bi

3: Set the initial states of the vehicle: (r0, θ0, φ0, V0, γ0, ψ0)

4: Choose the unknown parameters: (σ1, V1, V2) or (σ1, σ2, V1, V2, V3, V4)

5: Generate N random pigeons and initial the position vector X (k) and velocity vector V (k)

6: Formulate the fitness function using (22) or (23)

7: //Main loop

8: while iteration t ≤ NITER (stop criteria) do

9: //The map and compass operator

10: for N pigeons do

11: Update pigeon velocity using (9)

12: Update pigeon position using (10)

13: Evaluate the fitness and determine the current best position

14: end for

15: //The landmark operator

16: Rank the fitness and select the half flock of pigeons close to the landmarks

16: Determine the center of the selected half using (11) and (12)

17: Update pigeon position using (13)

19: end while

20: //Results

21: Find the global best position, i.e., the optimal solution

22: Determine the trajectory control profile using (20) or (21)

23: Generate the gliding trajectory and validate the path constraints

With regard to the trajectory path constraints (3–
5), the common solution is to transform them into the
boundary limits of bank angle profile. Herein, the con-
strained PIO algorithm provides an easier approach to
enforce deal with these inequality constraints. Accord-
ing to the rule (e), if one of the path constraints (3–5) is
violated by individual pigeon, the PIO algorithm will
simply set the fitness function to be an infinite value
and stop the velocity update. The search space of the
position vector is reduced to meet the trajectory path
constraints. Thus, the complete pseudocode of the pro-
posed optimization algorithm can be listed in Table 1.

In fact, the objective of this paper was to present a
newmethod for solving the gliding trajectory optimiza-
tion problem and avoiding the calculations needed in
common analytical approaches. This is accomplished
by using the improved PIO algorithm with simplified
bank profile design. Indeed, the problem can be solved
by various optimization methods such as the classi-
cal method of descent. The swarm intelligence may
not have better performance in computational complex-
ity than the classical methods because the computation

time is also influenced by the swarm size and the desig-
nated iterations. However, the swarm intelligence may
possibly obtain a global optimal solution without a rig-
orous initial guess of the unknown parameters. For this
reason, the improved PIO algorithm is selected for the
gliding trajectory optimization problem.

4.4 Footprint generation

The footprint for the gliding vehicle provides the criti-
cal information of reachable locations with the TAEM
interface. Assume that the maneuverability of the glid-
ing vehicle is uniform, and then, the region of the foot-
print mainly depends on the initial reentry states, con-
trol boundaries, path constraints, and terminal condi-
tions [2]. In detail, the footprint is a two-dimensional
set determined by the longitude and latitude, for which
the terminal altitude and velocity should be constrained
to the desired values. As shown in Fig. 3, two kinds of
shapes are typically used to describe the footprint. One
is like a fan and the other like a polygon.
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Fig. 3 Illustration of typical footprints

In general, the footprint computation problem is
solved by searching a series of maximum-crossrange
trajectories that have different downrange [29]. In addi-
tion, the direct trajectory optimization technique can
be employed to generate the footprints by using the
pseudospectral method [30]. However, it is quite time-
consuming to obtain an accurate footprint and also
complex to formulate the optimization problem in the
mission deployment for both nominal flights and abort
situations. Therefore, a simple approach to generate the
approximate footprint is required which may provide
a feasible solution for a fast decision of the landing
options.

As shown in Fig. 4, the velocity-dependent bank
angle profile is used herein to present the basic idea
of the forward and backward reversal logic. To be spe-
cific, the forward reversal criterion is that the sign of
the bank angle profile turns reversed after the velocity
decreases to the critical value. The magnitude remains
unchanged. The logic can be formulated by the follow-
ing equation:

σcmd(V ) =
{

σcmd(V ), V ≥ V+
−σcmd(V ), V < V+

(24)

where σcmd(V ) is the selected bank angle profile and
V+ is the critical velocity in the forward reversal logic.

Table 2 Initial states of the gliding vehicle (Example 1)

h (km) V (m/s) θ (deg) φ (deg) γ (deg) ψ (deg)

75.0 6000.0 0.0 0.0 −1.0 60.0

In contrast, the backward reversal turns the sign of the
bank angle reversed before the velocity decreases to the
critical value. The expression of the backward reversal
logic is given by

σcmd(V ) =
{−σcmd(V ), V ≥ V−

σcmd(V ), V < V−
(25)

where V− is the critical velocity in the backward rever-
sal logic.

Thus, the main process of the footprint generation
can be described as follows. First, the gliding trajec-
tory with the maximum crossrange is obtained by con-
strained PIO algorithm that is presented in the previ-
ous section. Then, the optimal bank angle profile is
used to generate the reversed bank command set by
selecting different critical velocities V+ and V−. And
further, the 3DOF dynamics are numerically integrated
by the reversed bank commands such that the approxi-
mate footprint consists of a group of gliding trajectories
with different crossrange. Note that the reversed bank
command set depends on the same interval of velocity,
and therefore, these gliding trajectories will end at the
specified terminal velocity. In addition, the forward and
backward reversal logic does not change themagnitude
of the velocity-dependent bank angle profile such that
the terminal constraint on the altitude would not be
violated.

5 Numerical simulations

In this section, the numerical results of the gliding
trajectory generation are presented by using the con-

Fig. 4 Illustration of the
forward and backward
reversal logic
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Table 3 PSO and PIO results of the best fitness and parameters
in 10 runs

Algorithms Best
fitness

Best parameters Mean

σ1 (deg) V1 (m/s) V2 (m/s)

PSO 0.0371 49.145 5336.7 4055.4 0.0453

PIO 0.0365 47.865 5571.9 4251.7 0.0437

strainedPIOalgorithm.The total number of the pigeons
is set to N = 60. The maximum number of the itera-
tions is set to NITER = 40. The factor of the map and
compass operator is R = 0.2. The aerodynamic and
characteristics parameters use the CAV-H data [31].
The nominal angle of attack profile is determined by the
following parameters: α0 = 30◦, Kα = 0.21, Vα =
4764.2 m/s (i.e., 14Mach). The initial value of the bank

angle profile is set to σ0 = 0◦. The limits of the bank
angle boundary is set to σmax = 60◦ and σmin = −60◦.
The path constraints remain fixed throughout the sim-
ulations as Qmax = 0.8 MW/m2, qmax = 80 kPa, and
nLmax = 4.

5.1 Example 1 (maximum-range gliding trajectory)

This example presents the generation of the maximum-
range gliding trajectory based on the design of the
velocity-dependent bank angle profile. Herein, the
parameterized profile (20) is used for the trajectory
control input. The initial states of the reentry gliding
vehicle are listed in Table 2. The terminal trajectory
conditions are set to be h = 24 km and V = 1500 m/s,
respectively. The objective function (23) is selected to
obtain the gliding trajectorywithmaximumcrossrange.

Fig. 5 Maximum-range
gliding trajectories
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Fig. 6 Comparative
evolution curves of the best
fitness

Table 4 Initial states of the
gliding vehicle (Example 2)

Cases h (km) V (m/s) θ (deg) φ (deg) γ (deg) ψ (deg) Reversals

PIO 1 69.0 5850.0 10.0 0.0 −1.0 53.0 One

PIO 2 68.5 5800.0 5.0 10.0 −1.0 65.0 One

PIO 3 68.0 5750.0 30.0 −10.0 −1.0 33.0 One

PIO 4 69.5 5900.0 0.0 20.0 −1.0 80.0 Two

PIO 5 67.5 5800.0 20.0 −5.0 −1.0 47.0 Two

Table 5 PIO results of the
fitness and parameters in the
five cases

Cases Fitness Parameters

σ1 (deg) σ2 (deg) V1 (m/s) V2 (m/s) V3 (m/s) V4 (m/s)

PIO 1 0.0165 6.632 – 4499.8 2808.0 – –

PIO 2 0.0222 19.472 – 4698.3 2507.7 – –

PIO 3 0.0186 −18.742 – 5049.1 2524.5 – –

PIO 4 0.0233 31.495 −27.872 5113.3 4399.0 3382.7 2273.8

PIO 5 0.0236 −21.883 23.723 5002.5 4291.1 3400.4 1476.3

Fig. 7 Results of the ground tracks

Table 3 shows the PIO results of the best fitness val-
ues and parameters in comparison with the PSO algo-
rithm. It can be found that the PIO and PSO obtain sim-

Fig. 8 Results of the bank angle profiles

ilar solutions in the best fitness value. However, the PIO
algorithm has the better result with lower mean fitness
value in 10 runs. Figure 5 illustrates the maximum-

123



1792 J. Zhao, R. Zhou

Fig. 9 End-to-end gliding
trajectories

Fig. 10 Evolution curves of
the fitness in the five cases

range gliding trajectories including the state, control,
and path constraints. The PIO and PSO results are rep-
resented by the solid line and dot line, respectively. The
histories of the altitude–velocity profiles show that the
terminal trajectory conditions are satisfied with high
accuracy. The flight-path angles remain to be small
magnitude around zero which shows the common char-
acteristic of the reentry gliding vehicle. The similar
bank angle profiles are obtained by the PIO and PSO
algorithms. The solutions of the unknown parameters
in the control profiles are listed in Table 3. Figure 6
presents the trend of the fitness functions over 40 iter-
ations. It is seen that both the fitness values in the
PIO and PSO reach a convergence within the given
number of iterations. However, the PIO algorithm has
a much faster convergence rate than the PSO algo-

rithm. Note that the suboptimal solutions are obtained
herein because the bank angle profile is parameterized.
In addition, a trade-off between the total number of
pigeons and the optimal solution will notably improve
the computational efficiency.

5.2 Example 2 (end-to-end gliding trajectory)

Based on the constrained PIO algorithm, five end-to-
end gliding trajectories are generated in this simula-
tion with the same target at θ f = 50◦ and φ f = 30◦.
Herein, the velocity-dependent bank angle profile (20)
is applied to the first three end-to-end missions and
the two other missions employ the bank angle profile
(21). Table 4 lists the initial states of the reentry glid-
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Fig. 11 Samples of the reversed bank commands

ing vehicle in detail. The terminal trajectory conditions
are set to h = 23 km and V = 1300 m/s, respectively.
The objective function (22) is selected to obtain the
end-to-end gliding trajectory. The results of the fitness
value and the parameters for the five cases are listed in
Table 5.

The ground tracks are plotted in Fig. 7. It can be
seen that the reentry gliding vehicle can be driven
to the specified target although different initial reen-
try states are given in the example. All the ground
tracks in the five cases are smooth enough and show
that the velocity-dependent bank angle profiles (20)
and (21) are reliable to generate the end-to-end glid-
ing trajectory. Figure 8 presents the control profiles in
detail, from which we can find that the solutions of the
critical velocity and terminal bank angle agree with
the geometry of the end-to-end gliding trajectories.
The histories of the altitude, flight-path angle, head-
ing angle, and path constraint are illustrated in Fig. 9.
It is demonstrated that the PIO algorithm is feasible to
deal with the typical equality constraints and inequal-
ity constraints in the trajectory optimization problem.
In addition, Fig. 10 presents that the evolution curves
of the fitness in the five cases converge fast to respec-
tive values within the maximum number of iterations,
which shows an efficient application of the constrained
PIO algorithm to generate the end-to-end gliding tra-
jectory. It can also be found that the first three cases
(PIO 1, PIO 2 and PIO 3) have lower fitness values than
the two other cases (PIO 4 and PIO 5), which demon-
strates that the velocity-dependent bank angle profile

(20) results in better solutions than the bank angle pro-
file (21).

5.3 Example 3 (Footprints)

In this part, the generation of the approximate foot-
print is performed by using the forward reversal logic
(24) and the backward reversal logic (25). Herein, the
PIO solution of the optimal bank angle profile obtained
in Example 1 will be used to generate two sets of the
reversed bank commands. The initial states of the glid-
ing vehicle as well as the terminal trajectory conditions
for the TAEM interface are the same as those in Exam-
ple 1.

Figure 11 presents some typical samples of reversed
bank commands formulated by using the forward and
backward reversal logic with different critical veloci-
tiesV+ andV−. It can be seen that by selecting a specific
critical velocity, a pair of the forward and backward
reversed bank commands are constructed symmetri-
cally. The results also show that both the velocity inter-
val and the magnitude of the bank angle profile remain
unchanged.Basedon the reversed bank commands, two
sets of the gliding trajectories can be fast generated by
integrating the 3DOF equation of motion. Then, two
approximate footprints are constructed by these glid-
ing trajectories with different crossrange as shown in
Fig. 12. The corresponding gliding trajectories that are
derived by the above samples of reversed bank com-
mands are marked in the footprints. The approximate
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Fig. 12 Illustration of the approximate footprints

footprintsmay provide effective decision of the landing
options in mission deployment for both nominal flights
and abort situations.

6 Conclusions

The simplified design of the control profiles may con-
tribute to enhance the flexibility of gliding trajectory
optimization. In this paper, the standardized bank angle
profiles are developed in a quite simple form to reduce
the searching space of the trajectory control command.
Based on these velocity-dependent bank angle profiles,
the end-to-end andmaximum-range gliding trajectories
for the reentry vehicle are generated by using the con-
strained PIO algorithm. The simulation results demon-
strate that the improved PIO algorithm is an effective
tool to deal with the trajectory path constraints by set-
ting the fitness function to an infinite value if some
pigeon in the flock violates these inequality constraints.
The trajectory terminal conditions can also be solved
by adding penalty terms to the fitness function. In addi-
tion, the forward and backward reversal logic is pro-
posed to generate a set of reversed bank commands, by
which the two-dimensional footprints can be fast con-
structed. Although the footprints are obtained approx-
imately, they may provide feasible solutions for fast
determination of the landing options in both nominal
flights and abort situations. The future work will focus
on the design of the closed-loop guidance law and test
the ability of the trajectory control with dispersions and
uncertainties in the complex environment.
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