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Abstract 

The access of distributed generation (DG) and a large number of electric vehicles (EVs) have changed 
the operation mode of power system. Its reliability and stability are facing more and more challenges. 
Therefore, it is very important to accurately estimate the state of the power system. This paper discusses 
a new power system state estimation method that is based on the shuffled frog leaping pigeon-inspired 
optimization algorithm (SFL-PIOA). Firstly, establish EV charging load model and distributed gener- 
ation probability model (including photovoltaic power generation and wind power generation). Then, 
considering EVs and DG, the state estimation model of the new power system is built. The objective 
function and constraint conditions are established, and then the improved SFL-PIOA is used to solve 
the model. Finally, a simulation example is given to compare the improved algorithms (SFL-PIOA) to 
initial algorithm (PIOA). The results verify the feasibility and effectiveness of the improved method. 
© 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, the scale of power grid is expanding and the interconnection degree of
ower grid is improving. An increasing number of DGs and energy storage equipment make
he structure and operation mode of power system become more complicated [1] . The access
f DGs and EVs [2] and other energy sources has an impact on the stable operation of the
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Fig. 1. Composition mode of new power system. 
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ower grid [3 , 4] , while the lack of measurement also interferes with the acquisition of real-
ime data of the power system, bringing great difficulties to the acquisition of the real-time
peration status of the power grid [5] . The state estimation results obtained by the traditional
ower system state estimation technology can not meet the standard of the whole power
ystem operation scheduling. Therefore, it is of great theoretical significance and practical
alue to study the state estimation of new power grid. 

The research direction of traditional distribution network state estimation is mainly [6] :
easonable selection of state variables can reduce the sensitivity of state estimation to line
arameters [7] and improve the efficiency of state estimation. Commonly used state variables
nclude node voltage, branch current and power [8] ; Reasonable optimization of measurement
onfiguration can improve the accuracy and stability of estimation on the premise that the
istribution system achieves observability and economy; State estimation methods are reason-
bly selected. For example, reference [9] applies robust estimation to distribution network,
here the system state variable is the square of the amplitude of power and current at the
ranch head. Literature [10] studies the rational selection of distribution network state esti-
ator and concludes that the weighted least squares (WLS) estimator is reasonably suitable

or the distribution network with low measurement redundancy. 
With the growth of global demand for energy, more clean energy such as solar energy

11] and wind energy are integrated into the power grid in the form of distributed generation
12] , which increases the complexity of the operation mode of the power grid, as shown
n Fig. 1 . In order to make DG connected to the grid smoothly, on the basis of the above
raditional distribution network state estimation technology, the traditional power system will
8919 
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ncrease the development of grid access standards such as the location and capacity of the
G, evaluate the safety of the power system, and optimize the control of DG access [5] .
owever, these measures are based on measurement data with certain errors obtained by

ystem measurement devices, and in practical application, considering the cost and time, there
s not enough equipment, coupled with randomness and intermittentness brought by access
o DG, will affect the stable operation of power grid control [13] . When EVs are connected
o the power grid, they can be used as load when charging and power when discharging,
nd its charge-discharge characteristics will change the network structure of AC and DC
istribution network [14] . EV with the same total output may have different reconstruction
esults when connected to DC node or AC node, centralized or decentralized [15] . For EVs
ccess with different outputs [16] , different network losses and node voltage levels may also
ffect network reconstruction schemes [17] . When AC/DC power distribution network changes
rom passive network to active network due to EV access, the power flow distribution of the
ystem changes, and the power flow algorithm of the traditional distribution network and
C/DC power transmission system is no longer applicable [18] . Therefore, the traditional
ower grid operation management mode can no longer meet the requirements of the stable
peration of the power grid [19] , and is gradually changing into a new power system with the
ntroduction of multiple types of DG [20] . At present, there are few studies on distribution
etwork state estimation considering distributed power supply and electric vehicle. In order
o improve the accuracy of state estimation of new power system, refined smart electricity
eter is used to improve the accuracy of network parameters measurement [21] . Some new

lgorithms are also used to estimate the state of the power system, including newton-Gaussian
ethod based on least squares, semi-positive definite relaxation method and some intelligent

lgorithms, which improve the accuracy of state estimation to a certain extent [22] . Fast and
ccurate estimation of the state of the new power system is conducive to DG optimization,
eactive voltage control and power grid security assessment [23] . It is important to study the
tate estimation of the new power system with DG for intelligent distribution system. 

This paper contains six sections altogether. In Section 2 , the probabilistic model of elec-
ric vehicles and the charging power model of cluster electric vehicles are established. Sec-
ion 3 constructs a probabilistic model for photovoltaic power generation and a probabilistic
odel for wind power generation. In Section 4 , the power system state estimation objective

unction is constructed, and the pigeon-inspired optimization pigeons algorithm is improved
y shuffled frog leaping strategy to form the power system state estimation model. In Sec-
ion 5 , an example is used to verify the method. The last section is the summary of the whole
rticle. 

. Electric vehicle charging load modeling 

.1. Probabilistic model of electric vehicle charging load 

The disorder of EV charging load makes it different from conventional load. EV load not
nly has randomness at a certain time, but also has time variability and volatility at a certain
ime [24] . The EV charging load model established in this paper assumes that the starting
harging time and daily mileage do not interfere with each other, and the user starts charging
mmediately after returning home from the trip until it is fully charged. Then its Probability
8920 
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Fig. 2. Probability distribution of daily distance travelled. 

Fig. 3. Probability distribution of travel time. 
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f ( d ) = 1 / 
(

d σd 

√ 

2π
)

· exp 

(−( ln d − μd ) 
2 / 2σ 2 

d 

)
(1)

Where: d is mileage, set μd = 3.41, σd = 1.23. The probability distribution of daily driving
istance of electric vehicles is shown in Fig. 2 . 

The first trip time of electric vehicles is expressed by Eq. (2) , and its probability density
unction is composed of two normal distribution functions. The travel time probability density
urve is shown in Fig. 3 . 

f c ( t ) = 

⎧ ⎨ 

⎩ 

1 / 
(
σc 

√ 

2π
)

· exp 

[−( t − μc ) 
2 / 

(
2 σc 

2 
)]

, 0 < t < μc + 12 

1 / 
(
σc 

√ 

2π
)

· exp 

[−( t − μc ) 
2 / 

(
2 σc 

2 
)]

, μc + 12 < t < 24 

(2)

Where: μc = 8.67, σc = 3.23. 
The probability density function of the return time of the EV is Eq. (3) . Finally, the return

ime probability density curve is shown in Fig. 4 . Finally, the return time probability density
8921 
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Fig. 4. Probability distribution of return time. 
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urve is shown in Fig. 4 . 
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)]
, 0 < t < μs + 12 

1 / 
(
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√ 

2π
)

· exp 

[−( t − 24 − μs ) 
2 / 

(
2σ 2 

s 

)]
, μs + 12 < t < 24 

(3)

Where: set μs = 16.48, σs = 3.26. 

.2. Charging power model of cluster electric vehicles 

The charging power of EV i in time period t is not only related to EV charging start
ime t i , but also related to charging duration T ic . In the case of disordered charging, EV is
onsidered to be connected to the power grid immediately after the end of the day’s trip, so
he moment when EV starts charging is the end of the day’s trip. The charging duration Tic
f EV i is as follows: 

 ic = min ( ( R i W i ) / ( 100P i ) , T i0 ) (4)

Where, R i represents the daily mileage of electric vehicle i ; P i represents the charging
ower of electric vehicles; W i represents the 100 km power consumption of the electric vehicle
 ; T i0 represents the stopping time of electric vehicles, and its value can be expressed by
q. (5) 

 i0 = 24 − T i,e + T i,s (5)

Where: T i,e , T i,s , respectively, represent the end time of daily distance of travel and the
rst trip time of EV i . 

The charging power Pi ( t ) of EV i at time period t is as follows: 

 i ( t ) = 

{
P i t i ≤ t ≤ t i + T ic 
0 else 

(6)

Large-scale cluster EV charging model can be obtained based on EV charging characteristic
odel and EV driving rule model [25] . To study the charging of a cluster of N electric

ehicles, assume that the electric vehicles are connected to the grid for charging immediately
fter the end of a day’s journey. Then the charging power of the electric vehicles connected
o the grid at time t during the day is shown as Eq. (7) . 

 ( t ) = 

N ∑ 

P i ( t ) (7)

i=1 
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. Probabilistic model of distributed generation 

.1. Probabilistic model of photovoltaic generation 

Light intensity has randomness and can approximately obey Beta distribution in a period
f time [26] . Its probability density function is: 

f ( r ) = ( �( α + β) / �( α) �( β) ) · ( r/r max ) 
α−1 · ( ( r max − r ) /r max ) 

β−1 (8)

Where: the maximum radiation intensity in this period; � is the Gamma function. α and
are the parameters of Bate distribution, and their values can be calculated from the mean

alue μ and standard deviation σ of light intensity during this period, and the values are,
espectively: 

= μ
[
( μ( 1 − μ) ) / σ 2 − 1 

]
(9)

= ( 1 − μ) 
[
μ( 1 − μ) /σ 2 − 1 

]
(10)

Where: μ is the mean value under a certain light intensity in this period; σ is the standard
eviation at a given light intensity during this period. 

Distributed photovoltaic generation consists of a series of solar panels, the number of
anels is M . Assume that the area and photoelectric conversion efficiency of each panel are
m and ηm 

, m = 1,2…, M , then the active power output P PV of distributed photovoltaic is: 

 PV = r ·
M ∑ 

m=1 

A m 

·
( 

M ∑ 

m=1 

A m 

· ηm 

/ 

M ∑ 

m=1 

A m 

) 

(11)

According to Eqs. (8) and ( 11 ), the probability density function of distributed photovoltaic
utput can be expressed as: 

f ( P PV ) = �( α + β) / �( α) �( β) · ( P PV /R m 

) α−1 · ( 1 − P PV /R m 

) β−1 (12)

Where: R m 

is the maximum active power output value of distributed photovoltaic. The
alculation expression is: 

 m 

= r max ·
M ∑ 

m=1 

A m 

·
( 

M ∑ 

m=1 

A m 

· ηm 

/ 

M ∑ 

m=1 

A m 

) 

(13)

.2. Probabilistic model of wind generation 

The output of distributed wind power is mainly converted from wind energy to electric
nergy by wind generators [27] , and its output is mainly related to wind speed, which is
ypically uncertain. The probability density function of wind speed v is: 

f ( v ) = α/β · ( v/β) α−1 · exp 

[−( v/β) β
]

(14)

Where, α and β are the shape parameters and scale parameters of the function. The
unctional relationship between active power output P W 

and wind speed v of distributed wind
ower is as follows: 

 W 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 v < v c 
k 1 v + k 2 v c ≤ v < v r 

P r v r ≤ v < v t 
0 v > v t 

(15)
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Fig. 5. Power characteristic curve of distributed wind power. 
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 1 = P r / ( v r − v c ) (16)

 2 = P r v c / ( v r − v c ) (17)

Where, Pr is the rated power value; Vr , Vc and Vt are the rated wind speed value, cut
ind speed and cut wind speed of the fan, respectively. The P W 

function curve of distributed
ind power output is shown in Fig. 5 . 
According to Eqs. (14) and (15) , the probability density function of distributed wind power

utput can be expressed as: 

f ( P W 

) = α/k 1 β · ( ( P W 

− k 2 ) /k 1 β) α−1 · exp 

[−( ( P W 

− k 2 ) /k 1 β) α
]

(18)

. State estimation model of the new power system 

.1. Objective function 

In the state estimation of power system, the error of quantity measurement is called mea-
urement error. All measurement errors in the system are given the same weight coefficient,
hich will lead to the decline of state estimation accuracy [28] . Therefore, the objective func-

ion of the weighted least square estimation method is adopted in this paper, and different
eight coefficients are given to different precision. The high precision is given high weight,

nd the low precision is given low weight. The objective is to minimize the sum of squares
f the difference between the measured value and the estimated value. The objective function
f the state estimation model is: 

in J ( X ) = 

K ∑ 

k=1 

ω k ( z k − h k ( X ) ) 2 (19)
8924 
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Where, K is the total number of measured nodes; k is the serial number of the measuring
ode. ω k is the weight factor of the k th node; z k is the measured value of the k th node; h k ( X )
s the measurement equation of the k th node. 

The voltage, active power and reactive power parameters of nodes are taken as state values
o be estimated, and the network nodes of power system are divided into DG nodes and load
odes. The active power in power system is divided into DG active power and load active
ower, and the same reactive power is also divided into DG reactive power and load reactive
ower. The specific formula is expressed as Eqs. (20) –(23) : 

 k = [ U k , P k , Q k ] ; k = 1 , 2, . . . , n (20)

P G 

= [ P G 1 , P G 2 , . . . , P Gd ] ( 1 ∗d ) 

P L = [ P L1 , P L2 , . . . , P Ld ] ( 1 ∗l ) 
; P k ∈ ( P G 

∪ P L ) (21)

Q G 

= [ Q G 1 , Q G 2 , . . . , Q Gd ] ( 1 ∗d ) 

Q L = [ Q L1 , Q L2 , . . . , Q Ld ] ( 1 ∗l ) 
; Q k ∈ ( Q G 

∪ Q L ) (22)

 = d + l (23)

Where, X is the state variable; U k is the node voltage; P G 

is the active power of DG; P L is
he active power of load; Q G 

is the reactive power of DG; Q L is reactive power of load; d is
he number of DG nodes; l is the number of load nodes; n is the total number of distribution
etwork nodes. 

.2. Constraints 

According to the power flow constraint equation of the new power system, the equation
onstraint conditions of the model objective function are established, which can be expressed
s: 
 

 

 

 

 

 

 

P i = U i 

n ∑ 

j=1 
U j 

(
G i j cos δi j − B i j sin δi j 

)
Q i = U i 

n ∑ 

j=1 
U j 

(
G i j cos δi j + B i j sin δi j 

)
( i = 1 , 2, . . . , n; j = 1 , 2, . . . , n ) 

(24)

Where, i and j are the nodes (including DG node and load node); P i is the active power
f node i ; Q i is the reactive power of node i ; U i is the voltage amplitude of node i ; Uj is
he voltage amplitude of node j ; δi j is the difference between node i phase Angle and node
 phase Angle; Bij is the imaginary part of the element in the admittance matrix. 

Constraint condition Eq. (21) can be expressed as: 

 k ( X ) = 0 ( r = 1 , 2, . . . , R ) (25)

Where, r is the serial number of the constraint conditions of the equation; R is the total
umber of conditions, R is equal to 2 r . 

The inequality constraints of the model are upper and lower limits of state variables, which
an be expressed as: 

P Gi min ≤ P Gi ≤ P Gi max 

P Li min ≤ P Li ≤ P Li max 
(26)
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Where, P Gi is the active power of distributed power node i ; P Gi min is the minimum active
ower of node i . P Gi max is the maximum active power of the corresponding node i . P Gi is the
ctive power of load node i ; P Li min is the minimum active power of the corresponding load
ode i . P Li max is the maximum active power of the corresponding load node i . 

Inequality constraint Eq. (26) can be expressed as: 

f m 

( X ) ≤ 0 ( e = 1 , 2, . . . , E ) (27)

Where, e is the number of inequality constraint conditions; E is the total number of in-
quality conditions, E = 2 e . 

.3. The shuffled frog leaping pigeon-inspired optimization algorithm 

.3.1. Pigeon-inspired optimization algorithm 

Pigeon-inspired Optimization Algorithm (PIOA) simulates the homing navigation process
f pigeons based on magnetic field, sun and landmarks, and seeks the optimal solution in
he solution space by satisfying constraints in the process of solving the Optimization model
29] . The optimization process can be divided into two phases: magnetic field operator and
andmark operator phase. In the magnetic field operator phase, the flock is far away from
he destination and mainly navigates according to the magnetic field and the altitude of the
un. When the flock is close to the destination and the ground object can be observed, the
andmark operator phase is entered, and the specific steps are as follows: 

Step 1: Initialization, randomly generate the initial position of each pigeon. 
Step 2: Determine the population size and iteration steps, including phase iteration steps

f magnetic field operator and phase iteration steps of landmark operator. 
Step 3: Magnetic field operator phase. In the initialization phase of this algorithm, the

osition and direction of flight are determined according to the position of magnetic field and
un. In this model, each pigeon updates its position according to the latest global optimal
olution in the current iteration. Through repeated iteration, the number of iterative steps in
he magnetic field operator stage is reached, and then go to Step 4. 

Step 4: Some pigeons in the doves may have found a destination or a familiar landmark
n the field operator phase, so these pigeons can move quickly to the destination, while other
igeons follow them and enter the landmark operator phase. The landmark operator will order
he fitness of the current individual, abandon the individual who is low, and use the center of
he remaining pigeon as a landmark as a reference direction for flight. 

Step 5: Iterate the calculation repeatedly. Output the final power system state estimate
hen the number of iteration steps in the landmark operator stage is reached. 

.3.2. Introduce shuffled frog leaping algorithm 

The Shuffled Frog Leaping Algorithm (SFLA) [30] is introduced to initialize the pigeon
ock Algorithm. The steps of SFLA’s are as follows: firstly, the system randomly generates
 group state variables, sorts them according to their adaptive values and then divides them

nto p subgroups. Each subgroup is divided into q , in which p and q satisfy the p ·q = m . The
ystem randomly selects the j th group of state variables into a subgroup for re-ordering, as
hown in the following formulas: 

 j = 2 ( m + 1 − j ) / [ m ( m + 1 ) ] j = 1 , . . . , m (28)

 S = rand × ( X B − X W 

) (29)
8926 
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 W New 

= X W Old + D S ( −D max ≤ D S ≤ D max ) (30)

Where, P j represents the probability of the j th group state variable being selected; X B

epresents the optimal solution in the subgroup; X WNew 

represents the worst solution in the
ubgroup; D S represents step size; rand represents random factors subject to uniform distribu-
ion; X WOld represents the value of the status variable before the update; X WNew 

represents the
pdated value of the status variable. As long as X WNew 

is in the feasible region, the algorithm
ill continuously calculate the adaptive value of its space, and then judge the size of its

daptive value and the corresponding adaptive value of X WOld . If it is less than, the global
ptimal solution will replace X B and update X WOld . If the result does not advance further, the
alue of the randomly generated state variable is selected instead of X W 

, and the calculation is
ontinuously updated (the calculation stops at the number of iterations). When the algorithm
earches for the whole population, it mixes all state variables and reshuffles the sorted group,
nd continues to complete the local search until the iteration terminates or the algorithm ends
hen the conditions are met. 

.3.3. The steps of shuffled frog leaping pigeon-inspired optimization algorithm 

Combined with the hybrid hopping Frog algorithm and flock optimization algorithm, the
huffled frog leaping pigeon-inspired optimization algorithm (SFL-PIOA) is used to solve the
bove power system state estimation model. The specific steps are as follows: 

Step 1: The penalty function method is adopted, that is, the penalty term is introduced into
he objective function to change the optimization problem of power system state estimation
ith constraints into an optimization problem without constraints, and then the filling function
ethod can be used to solve it. According to constraint conditions Eqs. (25) and (27) and

bjective function Eq. (19) , the new objective function is defined as: 

in ψ ( X, z ) = J ( X ) + z 

{ 

K ∑ 

k=1 

G 

[
g k ( X ) 

] + 

M ∑ 

m=1 

F 

[
f m 

( X ) 
]} 

(31)

Where, z is the penalty factor, and a large positive number is generally taken. The function
 [ g k (X )] satisfies the following conditions: 
 

G 

[
g k ( X ) 

] = 0 , g k ( X ) = 0 

G 

[
g k ( X ) 

]
> 0 , g k ( X ) � = 0 

(32)

The function F [ f m 

(X )] satisfies the following conditions: 
 

F 

[
f m 

( X ) 
] = 0, f m 

( X ) = 0 

F 

[
f m 

( X ) 
] � = 0, f m 

( X ) > 0 

(33)

Step 2: Determine the population size, the number of iterative steps and the accuracy of
tate estimation δ. The number of iterative steps includes the number of iterative steps of
agnetic field operator and landmark operator. 
Step 3: Randomly generate m groups of state variable X h = ( x 1 , x 2 ,…, x n ) (including node

oltage, active power, reactive power, etc.), h = 1,2,3…, m . Set the iterative steps of the hybrid
opping frog algorithm, and initialize it with the hybrid hopping frog model. 

Step 4: In the stage of magnetic field operator, the solution was continued based on the
nitialization data obtained by the hybrid jumping frog algorithm. In this phase, each pigeon
8927 
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pdates its position (an estimate of the state variable) based on the most recent global optimal
olution in the current iteration. Assuming that the position and speed of the h th pigeon in
he flock are X h ( t ) and V h ( t ), respectively, then: 

 h ( t ) = V h ( t − 1 ) e −W t + rand 

(
X p − X h ( t − 1 ) 

)
(34)

 h ( t ) = X h ( t − 1 ) + V h ( t ) (35)

Where, W is the magnetic field operator; rand is a random number from 0 to 1. X p is the
lobal optimal position; T is the number of iterations. After repeated iteration, the estimated
alue of the state is closer and closer to the real value, and the number of iterative steps in
he magnetic field operator stage is reached, and then step 5 is carried out. 

Step 5: After the above steps, some of the pigeons in the flock may have found the
estination or familiar landmarks (partial estimates in a set of states have been obtained) so
hat the pigeons can move quickly to the destination. It is assumed that X c ( t ) is the central
osition of the flock, and its fitness is N p /2. In each iteration cycle, the landmark operator
ill sort the fitness of the current individual, discard the individual with low fitness, and take

he center position of the remaining pigeons as the landmark as the reference direction of
ight. Its expression is: 

 p ( t ) = N p ( t − 1 ) / 2 (36)

 c ( t ) = 

[ ∑ 

X h ( t ) · f it ( X h ( t ) 
] 
/ 
∑ 

f it ( X h ( t ) (37)

 h ( t ) = X h ( t − 1 ) + rand · ( X c ( t ) − X h ( t ) ) (38)

Where, N p is the number of half pigeons in each iteration process, that is, the number of
igeons is halved in each iteration process; fit ( X h ( t )) is the fitness function of pigeon h . 

Step 6: Repeated iterative calculation. When the number of iterative steps reaches the
andmark operator stage, the final state estimation value of the power system is output. Fig. 6
s the flow chart of SFL-PIOA. 

. Example analysis 

In order to verify the algorithm, IEEE30 power distribution system is taken as an example
o calculate the state estimation. Fig. 7 shows the improved IEEE30 power distribution sys-
em. During calculation, the reference power is 100MVA and the reference voltage is 10 kV.
istributed photovoltaic is connected to nodes 1, 2, and 5, distributed wind power is con-
ected to nodes 8, 11, and 13, and electric vehicle loads are connected to nodes 16, 17, 18,
0, and 30. 

The number of individuals is set as m = 200, and the total number of iterative steps is 205
enerations. Among them, the number of iterations T 0 of the hybrid leapfrog algorithm is 5,
he number of iterative steps T 1 of the magnetic field operator is 150 generations, and the
umber of iterative steps T 2 of the landmark operator is 50 generations. These parameters
re substituted into the power system state estimation optimization model, and the voltage
mplitude, active power and reactive power of each node are estimated, respectively according
o the solution steps proposed in this paper. Then, estimate the active power state value of DG
8928 
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Fig. 6. Flowchart of flock algorithm improved based on mixed leapfrog population division strategy. 

c  

e  

e
 

a  

e  

r  

s  

r  

t

onnected nodes and the active power state value of each node load. In order to verify the
ffectiveness of the proposed algorithm, PIOA calculation is used to compare with SFL-PIOA
stimation and measurement. 

As shown in Figs. 8 and 9 , it can be seen that the state estimation results of node voltage
mplitude and branch active power using SFL-PIOA are closer to the measured value. How-
ver, the estimation results using PIOA, especially the node voltage amplitude state estimation
esults, are prone to big fluctuations affected by DG and EV access. The result deviation of
tate estimation is also large. The measured value at node 21 is 1.0235. The improved algo-
ithm reduces the estimated voltage value from 1.035 to 1.0265 and the error rate from 1.12
o 0.29%. 
8929 



H. Gao and B. Zang Journal of the Franklin Institute 360 (2023) 8918–8935 

Fig. 7. Wiring diagram of the improved IEEE30 power distribution system. 

Fig. 8. Node voltage amplitude state estimation result. 

 

P  

i  

e
 

S  
As shown in Fig. 10 , the state estimation results of reactive power using SFL-PIOA and
IOA branches are very close to the measured values, but the state estimation results of PIOA

n branch 36 and branch 38 deviate greatly, especially the branch 36. SFL-PIOA reduced the
rror from 4.5Kvar to 2Kvar, reducing the error rate by more than 30%. 

As shown in Fig. 11 , the state estimation results of DG active power of each node using
FL-PIOA and PIOA are compared. It can be seen that the state estimation results of note
8930 
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Fig. 9. Estimation results of branch active power state. 

Fig. 10. Estimation results of branch reactive power status. 

Table 1 
Compares the simulation results of the two algorithms. 

Algorithm First simulation(s) Second simulation (s) Third simulation (s) Fourth simulation (s) 

SFL-PIOA 0.0090 0.00108 0.0115 0.0104 
PIOA 0.0171 0.0169 0.0182 0.0163 

1  

h  

 

l  

t  

T
 

t  
, node 5 and node 8 using SFL-PIOA are more consistent with the measured values. PIOA
as a large deviation at node 5, and the average error of SFL-PIOA is reduced by about 2%.

As shown in Fig. 12 , it can be seen that the state estimation results of active power under
oad of each node under SFL-PIOA are compared with those under PIOA, and it is obvious
hat the state estimation results under SFL-PIOA are more consistent with the measured values.
he average error was reduced by about 4%. 

The following is a further analysis and comparison. As shown in Table 1 , the calculation
ime of PIOA algorithm is slightly longer. Compared with PIOA, the speed of solving state
8931 
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Fig. 11. Comparison of DG active power of each node. 

Fig. 12. Comparison of active power of each node load. 

e  

r
 

a  

a

R  

M  
stimation parameters using SFL-PIOA is significantly improved. Compared with PIOA, the
unning time of the improved algorithm is reduced by 39.2% on average. 

In order to analyze the state estimation error processing efficiency of SFL-PIOA applied to
ctive distribution network with distributed energy, root mean square error ( RMSE ) and mean
bsolute error ( MAE ) are defined as follows: 

MSE = 

√ √ √ √ 

1 

P 

v ∑ 

q=1 

( X E − X A ) 
2 (39)

AE = 

1 

P 

v ∑ 

q=1 

| X E − X A | (40)
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Table 2 
RMES and MAE estimated by SFL-PIOA and PIOA for each state. 

Parameter Algorithm RMES MAE 

Node voltage SFL-PIOA 3.23 2.86 
PIOA 4.72 3.61 

Branch active power SFL-PIOA 3.83 3.46 
PIOA 4.78 4.09 

Branch reactive power SFL-PIOA 2.74 2.15 
PIOA 3.93 3.46 

DG active power SFL-PIOA 3.49 2.74 
PIOA 6.17 5.68 

Load active power SFL-PIOA 2.54 2.31 
PIOA 3.52 2.68 

 

a
 

M  

a
 

t  

e  

M  

P  

3  

m  

s  

M  

o

6

 

s  

t  

n  

i  

s  

a  

P  

c

D

 

o  

p  

c

Where, X E is the estimated value, X A is the measured value, P is the number of groups,
nd v is the number of estimated and measured values. 

Table 2 shows the data obtained from Fig. 8 to Fig. 12 , and then analyzes the RMSE and
AE comparison of node voltage, line active power, line reactive power, DG active power

nd load active power, respectively, by SFL-PIOA and PIOA. 
As can be seen from the comparison results in Table 2 , when SFL-PIOA is used to estimate

he state of the power system including distributed energy and electric vehicles, no matter the
stimated value of the active power of DG or the active power of the load, The RMSE and
AE in the estimation results of the improved SFL-PIOA are both smaller than those in the

IOA algorithm. Evaluating overall RMES and MAE, the average values of STL-PIOA were
.13 and 2.89. The average values of PIOA were 4.52 and 3.86. Compared with the PIOA
ethod, STL-PIOA optimized 30.7 and 25.1%. Therefore, the SFL-PIOA algorithm has a

maller error in calculating the state estimation value, and its algorithm performance is better.
eanwhile, it can be proved that the improved algorithm effectively improves the accuracy

f the state estimation of the new power system. 

. Conclusion 

In view of the complexity of the new power system and in order to improve the accuracy of
tate estimation, an improved hybrid pigeon swarm algorithm (SFL-PIOA) is used to estimate
he state of the power system containing DG and EVs. The state estimation model of the
ew power system is established. In order to initialize PIOA population, SFLA was used to
mprove PIOA, and then SFL-PIOA is used to verify the improved IEEE30 power distribution
ystem. The state estimation values of voltage amplitude, active power and reactive power
re compared, and the RMSE and MAE of the two are compared. The results show that SFL-
IOA is more accurate than PIOA, and has a better state estimation effect. This algorithm
an provide a reference for the new power system state estimation method in the future. 
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