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The Pigeon-Inspired optimization (PIO) algorithm is a novel intelligent optimization algorithm inspired
by birds’ behavior as their travel. This; behavior modeled to be used for solving many optimization prob-
lems in different fields. However; it always suffers from unstable behavior when used with nonlinear;
time-varying systems. In; this paper, this algorithm is adapted to calculate the optimum controller gains
for roll and pitch channels in a guided tactical missile. The; vehicle model is presented in a nonlinear;
form and then shown in a linearized form for the sake of an autopilot design. The PIO; algorithm is sup-
ported and accompanied by an adaptive algorithm to determine the initial states and constraints for the
PIO algorithm to enhance the behavior of the optimization algorithm to speed up the convergence rate to
reach an optimum and feasible solution. Also; an estimation function is incorporated to estimate model
parameters variation such as dynamic pressure, stability derivatives, and mass properties. Meanwhile; a
comparative analysis is carried out with original PIO and particle swarm optimization algorithms, utiliz-
ing a non-linear; model with the presence of noise source and disturbance to ensure the ability of the
algorithm to make the autopilot robust and stable against several sources of uncertainties.
� 2022 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction provided a feasible alternative to solve the problems of controller
Missile autopilot design is a complex problem due to high
dynamics, time-varying model parameters, and nonlinearity. The;
recent developments in designing the non-linear missile controller
include several approaches such as adaptive control (Kamen et al.,
1988); non-linear control (Elnaggar and Khalil 2016); gain schedul-
ing (Shamma et al., 1993); and, robust control(Apkarian et al.,
1995). The; most used method for missile non-linear control is
the gain scheduling technique. Yet; this method sometimes may
not guarantee stability as the optimal gains are calculated for
specific operating points then a switching case is utilized to select
the gain based on the system parameters. The; switching points
and system parameters are the problems of such techniques, as
the design is always based on only one or a few system parameters
(Shamma et al., 1993). Recently; meta-heuristic algorithms have
optimization problems. Pigeon-inspired optimization (PIO) is a
meta-heuristic algorithm (Duan et al., 2014); which is a widely
used algorithm in the process of search and optimization tasks in
different control systems applications (Zhu and Duan 2015,
Alharkan et al., 2020). This; algorithm always aims to locate the
optimal solution for high dimensionality and heterogeneity prob-
lems (Abadi and Khooban 2015, Nadia et al., 2020). Yet; the main
drawback of several meta-heuristic algorithms is the increased
complexity of finding the optimum solution for time-varying sys-
tems that may contain many suboptimal solutions and not differ-
entiable, which results in the absence of transient information
(Shayanfar and Gharehchopogh 2018, Kamboj et al., 2020). In; this
paper, a modified adaptive Pigeon-inspired optimization algorithm
is proposed to calculate the optimum autopilot gains with a time-
varying system and achieve a robust time response with adequate
stability margins (Mohamed and Duan 2020). The contribution of
this research can be summarized as follows:

A modified adaptive PIO algorithm is proposed to design an
optimum non-linear controller for a tactical short-range missiles
to enhance the controlled system robustness against parameters
variation such as dynamic pressure, stability derivatives, and mass
properties, the accelerated convergence rate, the reduction of algo-
rithm complexity to meet the constraints of real-time
implementation.
nspired
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Furthermore, a complexity analysis of the proposed algorithm is
carried out to investigate the availability of implementation in real
time. Also; model parameters variations are estimated based on
measured data. Simulation; of the modified algorithm is performed
with a nonlinear model, and uncertainties are considered.

2. Vehicle model

2.1. Model equations

Flight dynamics modeling is a crucial task for the designing and
implementing the flight controller. Vehicle kinematic and dynamic
modeling is always described by the vehicle equation of motion,
coordinate frame, and flight envelope based on the vehicle mission.
The kinematic model represents the attitude and navigation equa-
tions, whereas the dynamic model represents the forces and
moments equations (Siouris 2004, Zarchan 2019). Considering;
the vehicle’s aerodynamic coefficients and mission constraints is
essential for more realistic modeling. For; deriving a 6DoF model,
the vehicle is commonly treated as a rigid body (Jiang 2012).
Otherwise; an infinite degree of freedom should be considered
for vehicle rotation, which is hard. The; proposed model in this
work can be described as follows:

Force Equations:

_u ¼ 1
mX þ 1

m T �wqþ vr � g sinðhÞ
_v ¼ 1

mY � ur þwpþ g sinð/Þ cosðhÞ
_w ¼ 1

m Z � vpþ uqþ g cosð/Þ cosðhÞ

8><
>: ð1Þ

Moment Equations:

_p ¼ L
Ixx

_q ¼ M
Iyy

þ Izz�Ixx
Iyy

pr

_r ¼ N
Izz
þ Ixx�Iyy

Izz
pq

8>><
>>: ð2Þ

Attitude Equations:

_/ ¼ pþ q tanðhÞ sinð/Þ þ r tanðhÞ cosð/Þ
_h ¼ q cosð/Þ � r sinð/Þ

_w ¼ q secðhÞ sinð/Þ þ r secðhÞ cosð/Þ

8><
>: ð3Þ

Navigation Equations:

_xf ¼ u cos h cosw� vðcos/ sinw� sin/ sin h coswÞ
þwðsin/ sinwþ cos/ sin h coswÞ

_yf ¼ u cos h sinwþ vðcos/ coswþ sin/ sin h sinwÞ
�wðsin/ cosw� cos/ sin h sinwÞ

_zf ¼ �u sin hþ v sin/ cos hþw cos/ cos h

8>>>>>><
>>>>>>:

ð4Þ
Fig. 1. Block diagram of roll autopilot.
2.2. Autopilots construction

Because non-linear state models are challenging to handle,
most of the early progress in understanding the dynamics of mis-
siles and the motion stability was derived by studying linear small
perturbation equations (Stevens et al., 2015). The state-space mod-
els could be obtained as follows:

Roll autopilot State-Space:

_/

_p
_n

2
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ð5Þ
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Pitch autopilot State-Space:
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The missile control system is divided into two categories, roll
autopilot, and lateral acceleration autopilot. Roll; autopilot is
adopted to maintain the missile roll angle at zero value to facilitate
the guidance process. Lateral; autopilot is utilized to perform the
guidance commands sent from guidance computer (Blakelock
1991). The roll autopilot block diagram is shown in Fig. 1.

The lateral autopilot contains two autopilots, normal, and lat-
eral acceleration autopilots. As; the missile is an axis-symmetric
airframe, both autopilots are identical (Blakelock 1991). The nor-
mal acceleration autopilot could be studied alone instead of study-
ing both autopilots (will be denoted later as pitch autopilot). The;
block diagram of the normal acceleration autopilot is shown in
Fig. 2.

3. Pigeon inspired optimization (PIO) algorithm

The PIO algorithm is one of the bio-inspired swarm intelligence
optimization algorithms which depend on their formulation of the
behavior of pigeons’ flocks (Mora et al., 2004). Several modifica-
tions are proposed for enhancing the PIO algorithm convergence
by changing the tuning parameters or implementation procedure
(DUAN et al., 2015). The predator–prey pigeon-inspired optimiza-
tion (PPPIO) is proposed for integrated mission planning and con-
troller design (Mohamed et al., 2017). Furthermore; Bloch
quantum-behaved pigeon-inspired optimization (BQPIO) is a
hybrid algorithm that integrating the PIO with quantum theory
(Li and Duan 2014). PIO; is also utilized to tackle the air robot path
planning optimization problem investigated through comparative
experiments (Zhang et al., 2015). PIO; is also modified by integra-
tion with control parameterization and time discretization (CPTD)
technique to handle UAV formation problems (Zhang et al., 2014).
PIO algorithm could be extended in its applicability to other appli-
cations like DC motors control (Rajesh and Deepa 2020); spacecraft
(Zhang and Duan 2015); control of landing systems (Deng and
Duan 2016); and gliding trajectory (Zhao and Zhou 2015). Also,
the PIO algorithm could be applied in the field of flying vehicle
guidance to provide an optimum trajectory for vehicle flight. The
PIO; algorithm is based on the map and compass operator and
landmark models. Map and compass operator models are based on
the earth’s magnetic field and the sun with which the pigeons
are utilized to find a flock in its long travel. For; pigeon, iwith posi-
tion vector Xi and speed vector Vi, its position and velocity in a D-
dimension search space will be updated in each iteration. For
pigeon i, its new position vector Xi and velocity vector Vi at the
tth iteration could be calculated by (7) and (8).

ViðtÞ ¼ Viðt � 1Þ � e�Rt þ rand � ðXgðtÞ � Xiðt � 1ÞÞ ð7Þ



Fig. 2. Pitch autopilot block diagram.
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XiðtÞ ¼ Xiðt � 1Þ þ ViðtÞ ð8Þ
where R is the map and compass factor, rand is a random number,
Xg is the current global best position, and Xg could be calculated by
comparing the positions among all the pigeons.

Landmark operator is based on landmarks with which the
pigeons use the memorized landmarks to find their way and fly
back to their nest. This; reduces the number of pigeons in each
new population by half. This; operator represents that the pigeons
are still far from their destination and assumes they are not famil-
iar with the landmarks. Let; Xc(t) be the center of half of the
pigeon’s position at the tth iteration, then suppose every pigeon
could fly in a straight way to the destination Xc. The; position
updating rule for pigeon i at the tth iteration could be given by:

NplðtÞ ¼ Npðt � 1Þ
2

ð9Þ

Xc ¼
P

Npl
XiðtÞ:fitnessðXiðtÞÞP
Npl

fitnessðXiðtÞÞ ð10Þ

XiðtÞ ¼ Xiðt � 1Þ þ rand:ðXcðtÞ � Xiðt � 1ÞÞ ð11Þ
fitness (Xi(t)) is the quality of the individual pigeon. For the

minimum optimization problems, we can choose:

fitnessðXiðtÞÞ ¼
1

fminðXiðtÞÞþe for minimization problems

fmaxðXiðtÞÞ for maximization problems

(

For; each pigeon, the optimal position of the Ncth iteration can
be denoted with Xp, and Xp = min (Xi1, Xi2, . . ., XiNc). The role of
the PIO algorithm should be identified. Both; controllers are used
to control the vehicles by multiplying the feedback signals by cer-
tain gains. Because the missile model is a time-variant, these gains
change with time. The; role PIO algorithm is to compute the opti-
mum value for gains that will be used to control the missile
motion. Fig. 3 shows the block diagram, which clarifies the role
of the PIO algorithm in missile control operations.

3.1. Fitness function calculation

3.1.1. Fitness function calculation for pitch autopilot
The control law is formulated to provide a control action as:
Fig. 3. Role of PIO algorithm in vehicle control.

3

ugðnÞ ¼ �Kq � qðnÞ þ KI

Xn
k¼0

ean ðkÞT ð12Þ

Then, as the minimal objective function, use temporal integra-
tion of the absolute square error value to minimize the control
effort as much as feasible. The objective function is added to the
control input square and the pitch rate square. The; following is
the best parameter selection:

J ¼
Z 1

0
ðk1:q2 þ k1:u2

g þ k3e2an Þdt ð13Þ

Where k1, k2, and k3 represent the weights. The; rise time is
added, as shown in Eq.(14), to improve the response that leads to
decrease the settling time, which provides a faster response. The;
punishing function is modified to prevent the overshoot. Over-
shoot; is incorporated into the optimum index once it arises. Then,
the optimal indexes are as follows:

J ¼
R1
0 ðk1:q2 þ k1:u2

g þ k3e2anÞdt þ k4:tr : ean ðtÞ < 0R1
0 ðk1:q2 þ k1:u2

g þ k3e2an þ k5: ean ðtÞj jÞdt þ k4:tr : ean ðtÞ P 0

(

Where tr is the rise time, k4 and k5 are weighting parameters.
Setting the weights to be [k1 = 1, k2 = 0.1, k3 = 4, k4 = 100, k5 = 4].

3.1.2. Fitness function calculation for roll autopilot
The same procedure illustrated in the previous section is uti-

lized for the roll channel. The; control law which is formulated to
provide the control action is as follows:

unðnÞ ¼ Kp � pðnÞ þ K/e/ðnÞ ð15Þ
The optimal parameter selection is:

J ¼
Z 1

0
ðk1p2 þ k1:u2

n þ k3e2/Þdt ð16Þ

The optimal indexes are:

J ¼
R1
0 ðk1:p2 þ k1:u2

n þ k3e2/Þdt þ k4:tr : e/ðtÞ < 0R1
0 ðk1:p2 þ k1:u2

n þ k3e2/ þ k5: e/ðtÞ
�� ��Þdt þ k4:tr : e/ðtÞ P 0

(

ð17Þ
where tr is the rise time, k4 and k5 are weighting parameters. Setting
the weights to be [k1 = 1, k2 = 0.1, k3 = 4, k4 = 200, k5 = 4].

3.2. Steps of Pigeon-Inspired optimization implementation

The implementation of the optimization procedure is shown as
a flowchart in Fig. 4.

4. Adaptive Pigeon-Inspired optimization (APIO) algorithm

A novel adaptive parametric setting is introduced by the Adap-
tive Pigeon-Inspired Optimization method (abbreviated as APIO).
This; algorithm adapts the initial location of the population agents
with the vehicle model to enhance the algorithm convergence by
bringing the pigeons closer to the optimal solution (Nadia et al.,
2020). Furthermore; the required effort to find the optimal solution
is reduced to meet the real-time implementation constraints.



Fig. 4. PIO Implementation Procedure.
Fig. 5. Procedure of APIO algorithm.
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Moreover; it generates pigeon position boundaries based on stabil-
ity bounds calculated via various stability tests, the parameters of
map and compass operator equations could be adapted to allow
the pigeons’ location to encompass the whole convergence field
to find the local best solution. The; pigeons are placed in a starting
location as in Eq.(18) to begin the algorithm initialization as
follows:

Xið0Þ ¼
Kl þ ði� 1ÞKstep1 : 1 6 i 6 Np

2

Kinitial þ iKstep2 :
Np

2 þ 1 6 i 6 Np

(
ð18Þ

where

Kstep1 ¼ Kinitial � Kl
Np

2 � 1
;Kstep2 ¼ Ku � Kinitial

Np

2

ð19Þ

Initializing the velocity with zero at each new cycle, so:

Við0Þ ¼ 0 : 1 6 i 6 Np ð20Þ
Fig. 6. Block diagram of the vehicle.
4.1. Roll autopilot adaptation

In roll autopilot, the input signal is un, the state vector is [u, p,
n]T, the command signal is uc. From; Fig. 1, the input signal will be:

un ¼ Kppþ K//� K//c ¼ K/ Kp 0½ �
/
p
n

2
4

3
5þ �K/

� �
/c½ �

¼ K1X þ K2uc ð21Þ
The gains Kp and Ku will be initialized as:

Kp ¼ 1
Ln

�Lp � 1
25 50xnf� 2xnfLp � 4x2

nf
2 þx2

n

� �� �
K/ ¼ �x2

n
25Ln

25� Lp � 2xnf
� � ð22Þ
4

The gain bounds are investigated, utilizing Routh-Hurwitz crite-
rion. The; resulting gain bounds are as follows:

Kp : 0 ! 1
K/ : 0 ! ð25� LpÞ Kp þ Lp

Ln

	 
 ð23Þ



Fig. 7. Roll Channel Results in case of absence of noise and disturbance.
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The pigeon’s position and velocity initialization are as in the fol-
lowing equation:

Xið0Þ¼

5þ0:8i
29Ln

�Lp� 1
25 50xnf�2xnfLp �4x2

nf
2þx2

n

� �� �
�x2

nði�1Þ
725Ln

25�Lp�2xnf
� �þ 3�0:1i

29 ð25�LpÞ Kp þ Lp
Ln

	 

2
4

3
5 :16 i6 Np

2

30þ0:8i
30Ln

�Lp � 1
25 50xnf�2xnfLp�4x2

nf
2þx2

n

� �� �
0:03ið25�LpÞ Kp þ Lp

Ln

	 

þði�30Þx2

n
750Ln

25�Lp�2xnf
� �

2
4

3
5 :

Np

2 þ16 i6Np

8>>>>>>><
>>>>>>>:

Við0Þ ¼0 :16 i6Np

ð24Þ
4.2. Pitch autopilot adaptation

In lateral autopilot, the input signal is ug; the state vector is [a,q,
g,k]T where k is an introduced variable representing the integration
of the error signal and the command signal is anc. From; Fig. 2, the
input signal will be:

ug ¼ Kqq� KI
R
eandt ¼ Kqq� KIk

¼ 0 Kq 0 �KI½ �

a
q

g
k

2
6664

3
7775þ 0½ � anc½ � ¼ K1X þ K2uc

ð25Þ

The initial position and velocity of the pigeons will be as
follows:

Xið0Þ¼

5þ0:8i
29 Kq

� �
initial

ði�1Þ
29 KIð Þinitial þ 3�0:1i

29 T22�A1T12ð Þ A1B1 �D1 � T21 �A1T11ð ÞKq
� �

" #
:16 i6 Np

2

Kinitial þ
30þ0:8i

30 Kq
� �

initial
0:03i

T22�A1T12ð Þ A1B1 �D1 � T21 �A1T11ð ÞKq
� �� 30�i

30 KIð Þinitial

" #
:
Np

2 þ16 i6Np

8>>>>><
>>>>>:

Við0Þ¼0 :16 i6Np

ð26Þ
4.3. Steps of adaptive Pigeon-Inspired optimization implementation

The implementation procedure of the proposed optimization
algorithm is presented in the flowchart, as shown in Fig. 5.

4.4. Complexity of adaptive Pigeon-Inspired optimization

The input length does not vary between iterations with the map
and compass operators, and data is handled as an array structure.
As; a result, the map and compass operator’s complexity on a sin-
gle iteration is O(DNp), because the algorithm’s input length is the
number of pigeons. Np; is multiplied by D, which is the search
space. Regarding; the landmark operator, as the input length and
data are handled as an array, a quick sorting for the input is poten-
tially affects the time complexity to the worst-case condition. The;
complexity of the landmark operator in one iteration is
O(DNp + Np

2). Since; the number of iterations is Nc1max for the
map and compass operator and Nc1max for landmark operator, the
overall algorithm complexity can be calculated as the sum of the
previous operator’s complexities as O(DNp Nc1max + (DNp + Np

2)Nc2max).
The; iteration process’ computational complexity does not vary in
Table 1
Values of stability derivatives at checkpoints.

Point t Lp Ln Za Ma

1 6 �71 �4.965 �1.696 �2.7919
2 13 �74.1 �14.395 �6.091 �6.751
3 90 �0.583 �0.0689 �0.0203 �0.0238
4 170 �35.056 �6.303 �2.213 �2.447

6

the APIO algorithm; the initialization phase complexity is only
added. The initialization; procedure has a computational complex-
ity of (3D + 2DNp) to calculate the initial value and upper and lower
limits. Moreover; the calculation of initial pigeons’ position and
velocity are included. Therefore; the computational complexity of
APIO algorithm is O(DNp Nc1max + (DNp + Np

2) Nc2max + 3D + 2DNp).
5. Simulation

5.1. Simulation construction

To begin the building of the simulation, all the tools required to
embark on the six degrees of freedom simulation must be assem-
bled. Model; equations in (1), (2), (3), and (4), autopilots for the
pitch and roll channels were engaged with PIO, PSO, and APIO algo-
rithms and without utilizing the adaptation algorithm alone with
performing optimization with initial values of gains (Kin) all
together are to engage. Coyote; Optimization Algorithm (COA)
(Pierezan et al., 2019); for Global Optimization a state-of-the-art
optimization technique is involved to compare APIO behavior with
the COA technique. This; part is devoted to evaluating the designed
autopilots using a 6-DOF flight simulation model and constructing
a simulation on a Matlab environment, including the feedback
sensors, sensor noise, atmospheric disturbance, actuators, and
autopilots. The; simulation is performed using Matlab/Simulink
2017b environment to achieve optimization and control. Fig. 6;
shows the block diagram of the simulation with the module
blocks.

The Dynamic Pressure increases at the beginning of the flight
due to fuel consumption till (t = 13.05 sec), then decreases due to
fuel burnout till the peak, and then increases at decent. The; wind
velocity is determined in an inertial frame and transformed to the
body frame, then added to the vehicle velocity. The; resultant force
of the airframe is calculated due to the resultant velocity. The;
wind model is shown in (27), with a wind velocity vector of value:

V
!

w ¼
5:66
5:66
0

2
64

3
75½m=s� )

Vwx

Vwy

Vwz

2
64

3
75

f

¼

V
!

wð1� cosðpðt�15Þ
2 ÞÞ : 15 6 t � 16

V
!

w : 16 6 t � 19

V
!

wð1� cosðpð20�tÞ
2 ÞÞ : 19 6 t � 20

0
!

: otherwise

8>>>>><
>>>>>:

ð27Þ
Noise block introduces a uniform noise added with the feedback

sensors output. The; noise model of bounds ± 0.014 and zero mean
value and variance (6.54 � 10-5).

5.2. Simulation application

To apply the proposed algorithms to the vehicle in its nonlinear
form model with its complexity and stochastic calculation, the
algorithm should be used by selecting specific points at the
dynamic pressure response shown in Fig. 7 and applying the algo-
rithm to reach optimum gains for the autopilot. Depending; on
this, the selection will be based on choosing two points during
the action of rocket propulsion and two points after shut-off.
Zg Mg Mq u0 lp

�0.984 �1.997 �0.1834 469 2.218
�2.0933 �3.3076 �0.188 1053 1.971
�0.00978 �0.01533 �0.00127 692 1.878
�0.7607 �1.1943 �0.0798 933 1.878



M. Saad and M. Abozied Hassan Abozied Journal of King Saud University – Engineering Sciences xxx (xxxx) xxx
The; two most convenient points during rocket motor action at the
beginning of control system action are at the six second and
shut-off. After; the peak point is selected near the flight ends.
Therefore; the checkpoints will be at times (6 sec – 13 sec – 90
sec – 170 sec). Table 1; gives the value of stability derivatives at
these points.
Fig. 8. Roll Channel Results in case of the

7

5.3. Simulation results

Applying unit step input signal during 2 s for both commanded
roll angle and an investigation of response for two cases; absence of
noise and wind and existence of noise and wind. Simulating; the
vehicle with the wind effect, as shown in Fig. 7 and Fig. 8 for roll
existence of noise and disturbance.



Fig. 9. Pitch Channel Results in case of absence of noise and disturbance.
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Fig. 10. Pitch Channel Results in case of the existence of noise and disturbance.
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autopilot and Fig. 9 and Fig. 10 for pitch autopilot. The; input signal
for roll autopilot is a roll angle square signal with amplitude (1
[deg]) for two seconds, and for pitch autopilot is the normal accel-
eration square signal with amplitude (1 [g]) for two seconds except
at point 3, which will be of amplitude (0.1 [g]) for two seconds.

(a) APIO algorithm in Fig. 7(a), (c), (e), and (g) successfully pro-
vided the required performance as the autopilot tracked the
roll angle command released from the roll controller with a
rise time about 0.15 sec, in contrast, both PIO and PSO failed
to make the autopilot conduct a stable performance for roll
angle.

(b) In Fig. 7(b), (d), (f), and (h), APIO produced a control angle
within angle limits without exceeding limits except for point
3 due to lower density at the trajectory peak, and in turn, the
dynamic pressure will be lower, causing the rolling moment
damping derivative Lp to be low, and the response produces
high overshoot (about 32 %) and APIO consumes a great
effort to track the commanded signal.

(c) Applying the adaptation algorithm alone without optimiza-
tion in the simulation of initial gains (Kin) gives almost the
same performance in all parameters, which reflects that
optimization has not presented a significant effect on the
gains calculated from the adaptation algorithm.

(d) APIO applies a control angle to track the commanded signal,
whereas, both PIO and PSO are attempting to apply control
angle to track the input signal with no use till reaching a
control angle limits.

(a) In Fig. 8(a), the wind disturbance effect has not started, but
the noise alone has no noticeable effect on roll angle
response due to the roll channel low-frequency nature and
a remarkable fluctuation in control angle response at point
1 and 3, i.e., at low dynamic pressure in Fig. 8(b) and (f).

(b) In Fig. 8(d) and (h), the noise causes slight fluctuations in the
control angle due to the high dynamics of the vehicle, and
these fluctuations appear clearly in the control angle
response resulting from the APIO algorithm. Which; means
that the high dynamics of the vehicle repel noise affecting
the sensor readings.

(c) In Fig. 8(b) and (g), the response of APIO tracked the com-
mand signal but failed to reach a steady-state response dur-
ing the action of the control signal due to the wind effect.
Table 2
Statistics and Mean ranking coefficient of Friedman’s test for each algorithm.

Without disturbance

Method Mean Rank

Point 1
p-value = 0.00632

APIO
Kin
PIO
PSO
COA

2. 886
2.9
3.126
2.9
3.188

Point 2
p-value = 0.0086

APIO
Kin
PIO
PSO
COA

2.792
2.934
2.898
3.188
3.168

Point 3
p-value = 0.00509

APIO
Kin
PIO
PSO
COA

2.924
3.03
2.986
2.924
3.136

Point 4
p-value = 0.00025

APIO
Kin
PIO
PSO
COA

2.6267
3.0289
2.86
3.2422
3.242
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(d) In Fig. 8(a), (c), (e), and (g), noise and wind exerted on both
PIO and PSO enlarged the fluctuation in response, which
resulted from an increase of reduction in stability due to
noise sensitivity and the existence of wind.

(a) In Fig. 9(a), (c), (e), and (g), APIO was tracking reference com-
manded signal faster than both PIO and PSO, i.e., rise time
resulted from APIO is the least but with greater overshoot,
revealing that the adaptation algorithm has improved the
performance also in pitch autopilot.

(b) Also, applying only initial values for gains (Kin) results in a
slow response for the normal acceleration, and this reveals
that there were other optimum values for pitch autopilot
gains inside the region of stability and herein comes the role
of the APIO algorithm that utilized optimization to reach this
solution.

(c) In Fig. 9(b), (d), (f), and (h), APIO applied a greater control
angle to perform a faster response, but this resulted in a high
overshoot (25 %-100 %) at all points.

(a) In Fig. 10(a), (c), and (g), noise and disturbance did not pre-
sent any noticeable change in the response of normal accel-
eration or other parameters except at point 3 (Fig. 11(e)) due
to low dynamic pressure at the peak.

(b) In Fig. 10(a), applying only initial values for gains (Kin) is
still resulting a slow response for the normal acceleration,
and this reveals that there were other optimum values for
pitch autopilot gains inside the region of stability, and herein
comes the role of APIO algorithm that utilized optimization
to reach this solution.

(c) In Fig. 10(b), (d), (f) and (h), the noise effect is remarkable in
the form of a high-frequency fluctuations in the control
angle response.

Statistical analysis is carried out utilizing the Friedman test
(Derrac et al., 2014); for analyzing the error between commanded
and tracked roll and pitch angles. It; involves a variance-based
analysis by ranking the test data, as the lower rank indicates higher
performance. The; main test evaluation parameters are the p-value
to demonstrate the difference between the utilized testing data
and the mean rank, which measures the performance level of the
utilized datasets candidates.

A comparative statistical analysis is accomplished between the
proposed (APIO) algorithm and PIO, PSO, Kin, and COA algorithms
With disturbance

Method Rank

Point 1
p-value = 0.02095

APIO
Kin
PIO
PSO
COA

2. 876
2. 936
3.112
2.936
3.14

Point 2
p-value = 0.00068

APIO
Kin
PIO
PSO
COA

2.755
3.0175
3.0675
2.755
3.405

Point 3
p-value = 0.00028

APIO
Kin
PIO
PSO
COA

1.335
3.5825
3.2925
3.385
3.383

Point 4
p-value = 0.00037

APIO
Kin
PIO
PSO
COA

1.81
2.9425
3.3575
3.445
3.445
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utilizing the presented non-linear missile model for roll and pitch
channels without considering the action of control signals. The;
test was applied to the four points of the trajectory previously
selected, and the results are summarized in Table 2. The; results
of the pitch and roll channels are augmented for real evaluation
due to the coupling between both channels. As; shown in Table 2,
the (p-value) is less than 0.05, which indicates a higher degree of
difference between the utilized datasets; particularly in point-4,
the (p-value) is 0.00025 and 0.00037 for the nominal and disturbed
trajectory, respectively. Further; the mean rank demonstrates the
proposed algorithm’s performance for accurately tracking the
demanded trajectory in the roll and pitch channels. The; results
of PSO and Kin algorithms are close to the results of the proposed
algorithm by a difference of around 0.014 at point 1 and point 2,
but it presents a lower performance at point 3 and point 4 by a dif-
ference of around 0.4 due to high dynamics as well as the degree of
disturbance which reflects the proposed algorithm efficiency and
fast convergence rate for selecting the optimal gains for the roll
and pitch autopilots.

Finally, the APIO algorithm has accomplished the required task,
but like pigeon-inspired optimization, APIO has some drawbacks in
the application. APIO; has treated the disadvantages of PIO, but
these disadvantages still exist. These; appear in the complex
implementation of the APIO algorithm despite the complexity
analysis. Also; like PIO and APIO could be trapped into absolute
minima or maxima, and the iterations consume too much time till
ending. APIO; has treated the drawback of the PIO algorithm in the
shortage of information of PIO about the system to get complete
details about the linear model of the system obtained and acquired
from the APIO algorithm.
6. Conclusion

In this paper, a tactical missile control system is designed, and
the optimum values of controller gains are calculated using an
adaptive modified PIO algorithm based on a parametric setting
to enhance the algorithm robustness against model parametric
variations and speed up the convergence rate and finally, to
reduce the algorithm complexity, reduce the required execution
time and to meet the constraints of real-time implementation.
Furthermore; a comparative analysis is carried out for the pro-
posed algorithm with the original PIO, Kin, COA, and PSO algo-
rithms utilizing the presented non-linear missile model for roll
and pitch channels without considering the action of control sig-
nals. Model; parameters variation with time is handled by incor-
porating an estimation function into the original PIO algorithms
to overcome the problems of dealing with time-varying systems.
PIO; and PSO algorithms both performed unstable behavior with
non-linear vehicle model in roll autopilot response. In contrast,
the proposed APIO algorithm and simulation of adaptation algo-
rithm without optimization both have performed a stable and
robust performance with a rise time around 0.15 sec. The; exis-
tence of noise and disturbance did not present a remarkable
effect on roll angle response and normal acceleration response.
PIO; algorithm, PSO algorithm, and APIO algorithm have per-
formed a stable behavior in normal acceleration response when
engaged with pitch autopilot. In contrast, the adaptation algo-
rithm, when engaged alone with pitch autopilot, didn’t present
the required performance characteristics, and failed to reach the
commanded normal acceleration. This; clarifies the importance
of the optimization algorithm in calculating optimum gains for
the normal acceleration control in pitch autopilot. APIO; algo-
rithm, when engaged with pitch autopilot, provided a faster per-
formance than PIO, PSO, and COA algorithms, as the rise time for
the APIO algorithm is less than the rise time for the others by
11
around 30 % enhancement. Although; higher overshoot occurring
in normal acceleration response around 25 % higher in APIO algo-
rithm, but its effect can be negligible according to the system sta-
bility constraints.
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