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A B S T R A C T   

This paper proposes a sustainable energy management method for microgrids (MGs) in the urban area while 
taking into account energy storage systems (ESSs) and renewable energy (RE). This study integrates RE, such as 
solar and wind energy production, into the power grid, and formulates the optimum dispatch scheme of hybrid 
energy production, based on ESS charge and discharge planning using their digital models. Electricity is 
exchanged among the MG systems and the utilities on a daily basis. MG systems’ cost-effective dispatch per day is 
solved by an improved pigeon-inspired optimization algorithm (IPIOA) considering the time-of-use (TOU) and 
other technical limitations. IPIOA can be modified in various ways for finding possible spaces with greater ef
ficiency. This study uses IPIOA to manage power costs economically for Islanding and non-Islanding cases and 
compares the outcomes with other methods. Additionally, it uses micro-turbines as well as REs, ESSs, and 
Islanding and non-Islanding cases to schedule MGs optimally. In comparison to a number of existing algorithms, 
the new approach has proven to be more robust, reliable, and efficient.   

1. Introduction 

A number of countries have adopted energy-efficient policies for 
sustainable energy management in the urban areas. In addition to pro
moting the utilization of plug-in electric vehicles (PEVs), renewable 
energy resources (RERs), and hybrid electric vehicles (HEVs), the pro
grams also encourage power efficiency [1]. Nevertheless, as distributed 
generation (DG) from RERs spreads, resulting in more power production 
from the power plant to the distribution levels, as well as commercial
izing PEVs and stations for the charge, power grids experience more 
fluctuations and two-way communication. For adequate management of 
this phenomenon, interruptions must be minimized, service quality and 
reliability assured, and massive electrical grids avoided from being 
stressed. As an example, ref [2] outlined the issues associated with a 
large surplus of PV power in Germany, forcing coal-fired units to 
temporarily close. Ref [3] examined the effect of the Fast and Ultra PEV 
charging station on distribution grids, while ref [4] urged stronger 
cooperation among the transmission system operator and distribution 
system operator (DSO). 

Moreover, the U.S. consistently emphasizes the need for the demand 
response (DR) program as of the early 2000 s in an effort to enhance 
distribution network flexibility, including, by releasing specific 

electricity prices and incentives [1] that affect users’ decisions [5]. 
Additionally, the DR program ought to help users control, schedule, and 
manage individual loads, particularly when using Energy Storage Sys
tems (ESSs) and generators. 

Microgrids (MGs) are defined by the United States Dept. of Energy to 
be a set of interlinked loads and distributed power sources inside pre
cisely outlined limits, acting as one controllable unit on the grids. MGs 
are able to be operated in either islanded mode or non-Islanding mode 
by connecting and disconnecting from the grids. In this way, under 
disruptions, MG generations and the local load would be separated from 
distribution networks without damaging the reliability of distribution 
networks [6]. It is possible to design an MG to accommodate any number 
of houses up to a whole neighborhood. Furthermore, HEVs are classified 
as MGs due to their auxiliary or multiple-production power systems that 
support enhanced dynamic response. Nano-grids typically run in the 
islanded modes, in other words, separate from the charge stations, due 
to their small dimensions. 

MG electric architectures typically have a main bus, called the 
backbone that connects the convertors of a distributed energy system to 
the upstream grids. As well as being constructed in AC and DC modes, it 
could also be constructed in the radial or ring modes. Ref [7] discussed 
the benefits of using DC MGs over AC MGs because of their simplicity 
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and fewer conversion steps, particularly in the PV, ESS, and DC load, 
such as PEV charge. In addition, these benefits result in a smooth tran
sition to a DC network. In recently published papers, combined AC-DC 
MGs have been shown to have greater potential because of their secu
rity, robustness, and power quality, in addition to the possibilities of 
combining the advantages of AC and DC MGs. In fact, combined AC-DC 
systems are more suitable for home MGs since they do not require 
modifying the electric system [8]. 

A crucial duty of MG is claimed in ref [9] when it comes to MG power 
flow management, so MG energy management systems (EMSs) are part 
of the smart network control model’s 2nd layer. An energy appliance’s 
control system is the 1st layer of a smart network control model, 
whereas MG energy management systems (EMS) must manage multiple 
MGs through the MG EMSs of one smart network. As a result, the EMSs 
are responsible for implementing an actual decision-making method for 
controlling and managing the MG power flow and grid link. Therefore, it 
ensures that the local MG subsystems meet the preferences of end users 
and DSOs in accordance with a precise formulation of the Objective 
Function (OF). Additionally, the duration of the operation depends on 
the sampling interval of the smart meter, ranging from a couple of mi
nutes to a period of an hour [5]. 

In response to the simulation case examined, the OF formula may 
include penalties (rewards). Typically, they have been employed for 
evaluating the impact of variations in the power flow, self-usage by MGs, 
reducing peak demand, and the profits from grid-traded energy on the 
distribution network [10]. A variety of techniques are explored by re
searchers regarding the modeling of EMS, which range from rule-driven 
approaches using expertise to information-based approaches and ma
chine learning. Ref [11] defined 3 types of EMSs: stochastic model, soft 
calculating-driven model, and heuristic model, though most solutions 
described in academic papers combine the 3 types of models. A rein
forcement learning approach is also being investigated [12]. 
Information-based solutions in the EMS are investigated because just 
rarely does the EMS create the optimum plan of the local MG power flow 
in the actual world. Typically, research reports on the implementation of 
(pseudo)deterministic algorithms according to Dynamic Programming 
(DP), greedy algorithms, Mixed Integer Linear Programming (MILP), 
and Linear Programming (LP). Ref [13] proposes a constant power cost 
program for buying and selling energies and formulates the OF for 
maximizing income from trades in power. As a result, an LP formula can 
simply solve EMS. For optimizing the MG power flow, with its random 
and unpredictable features, EMS must be aware of the upcoming power 
system’s time series, as explained in published research. EV EMSs may 
have a similar issue with knowing automobile routes and traffic data in 
applications related to automobiles. Thus, according to [14], the opti
mization algorithm should not be directly applied to EMS; instead, it 
should be used for the analysis of benchmark results, EMS reference 
solution assessment, and power system sizing [15]. As a means of more 
effectively coping with the uncertainty associated with the MG power 
system, ref [10] examined a probability-based planning method. Meta- 
heuristic methods were likewise found to be useful. In contrast, ref 
[15] compares an NN-driven EMS with a less complex rule-driven EMS. 
Despite this, EMS schemes remain difficult to interpret in such 
situations. 

Technically, MG energy management (EM) involves a variety of 
limitations in a complicated and multidimensional environment. The 
current study proposes a novel framework for the sustainable energy 
management of the microgrids in the urban areas. To this end, digital 
twin is used as a powerful tool for modeling the realistic behavior of the 
physical devices. Moreover, an improved pigeon-inspired optimization 
algorithm (IPIOA) would addresses the nonlinear nature of the problem. 
This paper proposes changes to the IPIOA’s movement pattern in order 
to efficiently find possible spaces. IPIOA aims at improving MG power 
performance and optimizing DG utilization for maximizing income in a 
sustainable way. A comparison is made between the outcomes of the 
algorithm and earlier outcomes carrying out optimization on a number 

of scenarios. It is evident from the outcomes that the suggested approach 
would be practical, reliable, and better in comparison to existing algo
rithms. The rest of paper is organized as follow: System model and 
problem formulation are presented in sections 2 and 3, respectively. The 
Pigeon-inspired optimization algorithm (PIOA) and its improvement are 
introduced in section 4. Case studies and simulation results are reported 
in section 5. Finally, the main conclusion is presented in section 6. 

2. System scheme 

The study develops the optimization scheme to generate MG 
schedules, considering RER and ESS availability in an urban area. 
Throughout the 24 h, energy is exchanged among the utilities and the 
MG by means of the electrical connection making a sustainable power 
delivery system. MG is able to sell surplus energy to the utilities based on 
time-of-use (TOU). As well as operating Islanding, the MG could also be 
connected to the network. A specified load requirement can be met by 
optimally dispatching energy from various resources and ESS in accor
dance with the EM approach. It would be possible to use IPIOA as a non- 
Islanding unit and as a Islanding unit for cost-effective EM. As well as 
adequate production capacities, IPIOA provides operating methods and 
control systems. All microturbines (MT), wind turbines (WT), photo
voltaics (PV), and ESS schemes need to be developed. 

2.1. MT model 

MTs are referred to as DGs because they produce fixed amounts of 
energy. Eq.1 represents the price of fuel for a micro-gas turbine to be a 
quadratic function: 

Fi(Pi(t) ) = aiP2
i (t) + biPi(t) + ci (1) 

Fi(Pi(t) ) = aiP2
i (t)+biPi(t)+ci shows the price of the fuel for agent i 

during t. ai, bi, ci show the generation price coefficients for agent i. Pi(t)
shows the output of a committed agent i during t. 

2.2. WT model 

In a WT, wind power is converted into mechanical energy using 
complicated aerodynamics. As a randomly selected parameter, wind 
speed nearly completely determines wind energy practically. Eq.2 de
scribes the relationship between wind speed and mechanical energy 
derived [16]: 

Pw(t) =
1
2

ρv3(t)Cp(λ, θ)Aw (2) 

Where Pw(t) defines the output power from the WT at time t. θ is the 
rotor blades’ pitch angle (deg). λ is the tip velocity coefficient. ρ shows 
the density of air (kg/m3). v(t) is the wind velocity (m/s) at time t. Aw 

defines the area covered via the rotor (m2). Cp is the proficiency ratio of 
wind power. Cp(λ, θ) has been allocated in the following manner: 

Cp(λ, θ) = 0.73 × (
151
λi

− 0.58θ − 0.002θ2.14 − 13.2) × e−
18.4
λi

λi =
1

1
λ − 0.02θ

−
0.003
θ3 + 1

(3) 

Eq. 4 has been used to explain the OFF/ON state for the WT: 

v(t) = vi(t)if vstart ≤ v(t) ≤ vfull
v(t) = vfullif vfull < v(t) < vstop

v(t) = 0if vstop ≤ v(t)orv(t) < vstart

(4) 

Where vstop, vfull, and vstart are the stop, rated, and start wind speed 
(m/s), respectively. vi(t) is the current wind velocity (m/s) at time t. 
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2.3. The PV model 

PV arrays are formed by combining PV cells in series and parallel. 
The intensity of sunlight plays a major role in affecting PV panels’ 
output. Eq.5 calculates the output of a PV [17]: 

Ps(t) = KPV × PG(t) × APV (5) 

In which, Ps(t) shows PV output during t; PG(t) shows global radia
tion during t; APV shows the region of the PV array (W/m2); KPV shows 
the PV performance. 

2.4. The ESS model 

By calculating the difference between energy stored in 2 successive 
steps, it is possible to determine the output of one ESS. The ESS stores 
power in the following way [18].  

(1) When the ESS charges: 

ηCPB(t) ≤ Qs,max (6)  

Qs(t + 1) = Qs(t) + ηCPB(t) (7)    

(2) When the ESS discharges: 

ηDPB(t) ≤ Qs(t) (8)  

Qs(t + 1) = Qs(t) + ηDPB(t) (9) 

In which, ηC shows the charge performance and ηD shows the 
discharge performance. PB(t) shows the electric energy for the ESS 
output during tth hour. QB(t) shows the sum capacities of ESSs during tth 

hour. Qs,max shows the rated maximal storage power. 

3. Problem definition 

MGs can define energy management to be the optimization function 
minimizing overall operation costs and meeting inequality and equality 
restrictions. Here are the objective function and related limitations for 
the problem: 

minObj(.) =
∑H

t=1

{
∑N

i=1
Fi(Pi(t))Ui(t)+Ptie(t) × price(t)

}

(10) 

Where Ptie(t) is the active power sold/ bought to/from the main grid 
at time t. price(t) defines the TOU amounts. Ui(t) indicates the off/on 
conditions of agent i at time t. 

The system limitations and unit limitations are included in the 
limitations:  

(1) Balancing loads:   

Where Ploss(t) is the entire loss of grid transmission at time t. N and H 
show the entire number of micro-gas turbines and the scheduling time, 
respectively.  

(2) Agent power production restriction: 

Pi,min ≤ Pi(t) ≤ Pi,max (12) 

Where Pi,max and Pi,min are the maximum and minimum production 
restrictions of agent i, respectively.  

(3) Minimal up-time restriction: 

xon
i ≥ Ton

i (13)    

(4) Minimal down-time restriction: 

xoff
i ≥ Toff

i (14) 

Where xoff
i and xon

i define continued down-time and up-time of agent 
i, respectively. Toff

i and Ton
i define the minimum down-time and up-time 

of agent i, respectively.  

(5) Ramp up ratio: 

Pi(t) − Pi(t − 1) ≤ URi,

ifU(i, t) = 1andU(i, t − 1) = 1 (15)    

(6) Ramp down ratio: 

Pi(t − 1) − Pi(t) ≤ URi,

ifU(i, t) = 1andU(i, t − 1) = 1 (16) 

Where DRi and URi define ramp down and up of agent i, respectively.  

(7) Limitations associated with interchanging with utilities: 

Ptie,min ≤ Ptie(t) ≤ Ptie,max (17) 

Where Ptie,max and Ptie,min define maximum and minimum active power 
generation of the main grid at time t, respectively.  

(8) Limitations associated with capacity of the ESS: 

PB,min ≤ PB(t) ≤ PB,max (18) 

Where PB,max and PB,min define maximum and minimum storage 
amount of the ESS, respectively. Fig. 1 shows the 24 h power cost in the 
system. As mentioned before, this paper uses digital twin to help more 

Fig. 1. The TOU ratio for a day.  

∑H

t=1

{
∑m

j=1
Pload,j(t)+Ploss(t)

}

=
∑H

t=1

{
∑N

i=1
Pi(t)Ui(t) +

∑S

s=1
Ps(t)+

∑W

w=1
Pw(t)+Ptie(t) +PB(t)

}

(11)   
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accurate charging and discharging management of the ESS. The use of 
digital twin technology in energy storage systems (ESS) charge and 
discharge planning can improve the efficiency of the system and reduce 
energy costs [19]. Digital twin technology allows for the simulation of 
the system’s performance, as well as its interaction with the surrounding 
environment. This allows for more accurate predictions of ESS perfor
mance, which can be used to optimize the system’s charge and discharge 
planning. By analyzing the data from the digital twin, the system can be 
optimized to reduce energy costs and improve its efficiency. Addition
ally, digital twin technology can be used to detect potential issues and 
anomalies, allowing for early detection and prompt action. This can help 
to reduce the risk of system failures and improve overall system reli
ability [20]. 

The scalability of the digital twin hardware design is a critical aspect 
to consider, particularly when dealing with larger or more complex 
systems. In the context of the proposed sustainable urban management 
framework based on solar energy and digital twin, scalability becomes 
vital for effectively managing microgrids (MGs) in urban areas. As the 
system expands in size or complexity, the digital twin models need to 
accommodate and accurately represent the various components, such as 
renewable energy sources (e.g., solar and wind), energy storage systems 
(ESSs), and micro-turbines. The hardware design of the digital twin 
should be capable of handling the increasing volume of data and 
computational requirements, ensuring efficient modeling and optimi
zation of hybrid energy production and ESS charge and discharge 
planning. Furthermore, the scalability of the hardware design should 
enable seamless integration with the power grid, allowing for cost- 
effective dispatch and electricity exchange between MG systems and 
utilities. Considerations for scalability include robust algorithms, effi
cient utilization of computing resources, and adaptability to evolving 
technical limitations and future expansions. 

4. PIOA and its enhancement 

Evolutionary algorithms (EAs) offer several advantages for solving 
nonlinear and nonconvex problems. Their ability to perform global 
search makes them effective in finding the global optimum, even in the 
presence of multiple local optima. EAs are flexible and can handle 
various types of optimization problems without relying on specific as
sumptions about the problem’s structure. Moreover, their robustness 
enables them to handle noisy and uncertain domains, which are often 
encountered in nonlinear and nonconvex problems. Overall, EAs pro
vide a powerful and versatile approach for tackling these challenging 
optimization tasks. Duan first devises the PIOA in 2014 as a heuristic 
optimization method for solving complex problems. Ref [21] demon
strated that PIO was an efficient algorithm to solve air robot path 
scheduling problems in comparison to the conventional differential 
evolution (DE) algorithms. PIO is based on pigeon homing behaviors, 
akin to the search for optimum solutions. 

4.1. Behavior profiles of the natural pigeons 

Due to their excellent homing abilities, pigeons are used in the armed 
forces and communication fields since ancient times. Numerous in
vestigations [22] have shown that pigeons differ in their navigation 
methods for handling various parts of journeys. Upon starting a journey, 
pigeons choose directions based on compasses. For detecting variations 
in magnetic fields, the pigeon uses iron crystals in its beak after taking 
flight. Pigeons likewise use the sun to navigate, as well as to detect 
magnetic fields. They appear to be capable of detecting differences in the 
sun’s altitude at the beginning and finishing of their journey. Due to 
their ability to perceive magnetic fields and the sun’s altitude, they find 
their flight path. They, in contrast, switch their navigation tactics 
halfway through the journey in order to pay attention to the landmarks 
and route points, including hills, rivers, and roads, in order to correct 
and reassess during the journey. Using the homing behavior evaluation 

of the pigeon, the PIOA can be determined and is close to being 
optimized. 

4.2. An optimization algorithm based on pigeons 

This algorithm is represented by 2 operators, one like a compass and 
one like a landmark, which abstract pigeon homing features. As the 
altitude of the sun and magnetic fields change, compass-like operators 
change, and the landmark operators change with landmarks [21]. As 
they approach their location, they become more independent of 
compass-like operators and rely more on landmark operators.  

a) Compass-like operators 

To begin, the PIO algorithm generates several not-real members of a 
colony of pigeons. Every iteration procedure updates the position and 
velocity of not-real pigeons using the compass-like operators. The below 
formulas have been employed by pigeons for updating the position and 
velocity: 

Vi(t) = Vi(t − 1) • e− Rt + rand • (Xg − Xi(t − 1)) (19)  

Xi(t) = Xi(t − 1)+Vi(t) (20) 

In which, X shows the position and V shows the velocity of the not- 
real pigeon. rand shows a randomly selected actual numbers.R shows the 
navigation or compass factor. i shows the member indicator and t shows 
the count of iterations. A comparison of the present locations of pigeons 
in a total swarm of pigeons yields the optimal location, called Xg. 
Vi(t − 1) represents the previous flight path of the existing pigeon. 
Accordingly, an updated journey direction depends on its previous flight 
path and the present global optimum location.  

b) Landmark operators 

First, a fitness amount must be calculated for all not-real pigeon 
positions in the Landmark Operator using the below formula: 

fitness(Xi(t)) =
1

fmin(Xi(t)) + ε (21) 

There is an abandonment of approximately 50% of the members 
based on fitness value ranking. Xc(t) represents the center pigeon’s 
average amount during tth iterations. There is no doubt that the optimum 
location would be the best known member for landmarks. Other flyers 
are following the one to their goal. The below equations are used to 
determine the updated positions of others: 

Xc(t) =
∑

Xi(t).fitness(Xi(t))
NP
∑

fitness(Xi(t))
(22)  

Xi(t) = Xi(t − 1) • e− Rt + rand • (Xc(t) − Xi(t − 1)) (23) 

In which, Np shows the count of members of pigeons. 

4.3. PIOA improvement 

The PIOA appears similar to various metaheuristic algorithms but 
also suffers from local optimal trapping. Premature convergences are 
typically solved using chaotic and quantum evolution methods.  

a) Quantum evolution 

Swarm-based optimization algorithms use quantum evolution to 
increase the capacity of stochastic searches. An important feature in 
quantum evolution algorithms is the quantum rotation gate and is 
explained in the following way: 
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U(Δθi) =

[
cosΔθi − sinΔθi
sinΔθi cosΔθi

]

(24)  

[
αi
Ấ

βi

Ấ

]

=

[
cos(θi + Δθi)

sin(θi + Δθi)

]

(25) 

In which, θi shows the quantum rotations angle for all quantum bits. 
U(Δθi) shows the quantum rotation gate. Below is a complete descrip
tion of the update procedure: 
[

αi
Ấ

βi

Ấ

]

= U(Δθi).

[
cos(θi + Δθi)

sin(θi + Δθi)

]

(26) 

It is advantageous in comparison to traditional stochastic conversion 
to change the angle of a quantum bit during all updates and set a di
rection for the not-real pigeon’s optimal location. Table 1 determines the 
direction and value of θi. 

Quantum bit strings containing many quantum bits are used to ex
press population members [23]. In the quantum bit strings, all columns 
represent the quantum bits, in the following way: 

q =

[
α1
β1

⃒
⃒
⃒
⃒
α1
β1

⃒
⃒
⃒
⃒,⋯,

αn
βn

⃒
⃒
⃒
⃒
αn+1
βn+1

⃒
⃒
⃒
⃒,⋯,

αD+1
βD+1

⃒
⃒
⃒
⃒

]

(27) 

There is a random distribution of the ith dimension vector within the 
predefined Umax and Umin. The ith dimension is computed in the following 
way: 

xi = Umin
i +

(
∑n

i=1
bi.2i− 1

)

.
Umax

i − Umin
i

2n − 1
(28) 

The pigeon member X = (x1, x2,⋯, xD) can be obtained by repeating 
corresponding steps for all dimensions of the problems. 

4.4. Chaotic local search 

In chaos theory, small changes in primary circumstances result in 
large differences over time. In the metaheuristic algorithm, the chaotic 
quest method has been employed for avoiding early convergence. 
Swarm-based algorithms reduce local optimal traps as a result of chaotic 
searching processes. The system’s convergence time could be reduced 
accordingly. 

The study suggests replacing the low fitness amounts of members 
with better ones using Chebyshev map [24]. Chebyshev maps are clas
sical chaotic models iterating continuously as follows: 

zt+1
m = cos

(
k.cos− 1zt

m

)
, t = 0, 1, 2,⋯, (29) 

In which, k shows the control variable, in this case k = 2 and zt
m ∈

(− 1,1). Substituting the variables into Eq.29, a chaotic sequence is ob
tained corresponding to the dynamic characteristics. With the intro
duction of Chebyshev map, the chaotic local quest in the PIO algorithm 
aims to find the best location closest to the Xbest . The details of in
structions for Chebyshev chaotic quest are given below: 

Stage one: The number of iterations Nc is adjusted and a randomly 
selected number z0

m ∈ (− 1,1) is created for forming the Chebyshev se
quences. 

Stage two: Iteration numbers i are related to control variable k 
through the below formula. 

k =
Ne + 1 − i

Ne
(30) 

Stage three: The below formula has been used to determine the 
updated members: 

V = (1 − k).Xp + k.Xnew (31) 

Stage four: Fitness of the updated members is calculated and the 
optimal one to Xp is recorded. 

Stage five: A chaotic local quest ends if the present iteration times i 
correspond with the overall number of iterations Nc. If not, continue to 
search. 

5. Simulation results with different scenarios 

The suggested method is applied to a standard lower voltage MG, 
based on Fig. 2. It includes a group of DG units: 3 MTs, one WT, one PV, 
and ESS. A common coupling connects the system with the network. 
Figs. 3–5 show the overall load demands, the expected WT speed, and 
the expected PV irradiation during 24 h. The paper considers a 24-hour 
time interval on an hourly basis. Active power was generated at the 
unity power factor by each DG. 

5.1. Outcomes of various case studies 

It was possible to simulate both a non-Islanding and a Islanding case 
study for analyzing and comparing the MG system’s efficiency. MG 
systems and utilities are able to trade energy anytime when they are 
non-Islanding. Using DGs, WT, PV, and ESS for load management was 
investigated in a Islanding case study. As a result of higher utilization 
levels of DGs, power fluctuations are greater in the two case studies. 

The power supply model in the non-Islanding case study is shown in 
Fig. 6. DGs and utilities supply 44.7% and 55.3% of the overall pro
duction, with a 3.1% loss. Approximately 47.7% of the load demand is 
met by the PV and the WT, while the MG is entirely adequate for meeting 

Table 1 
Rotation angle.  

xi 0 0 0 0 1 1 1 1 

Besti 0 0 1 1 0 0 1 1 
f(x) > f(best) False True False True False True False True 
θi βi = 0 0 0 0 0 0 ∓0.05π ∓0.05π ∓0.05π 

αi = 0 0 0 0 ∓0.05π ∓0.05π 0 0 0 
αiβi < 0 0 0 0 0.05π 0.05π − 0.05π − 0.05π − 0.05π 
αiβi > 0 0 0 0 − 0.05π − 0.05π 0.05π 0.05π 0.05π  

Fig. 2. Standard lower voltage MG system diagram and modeling in DT system.  
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load demands. 
A Islanding power supply model is shown in Fig. 7. In this model, MT 

supplies 55.0% of energy production, WT supplies 34 %, and PV supplies 
11.1% of energy production. There is a reduction of 3.1% in loss to 2.5%. 
Due to the breakdown of energy from the utility for the Islanding case 
study, additional energy is needed from the MTs. MTs generate 50% of 
the power for the Islanding case study. 

The outcomes of the simulations for various case studies are shown in 
Table 2. All scenarios are tested for one hundred runs. Table 2 shows that 
the suggested algorithm performs well for finding solutions, the number 
of productions to convergence, and the average running time. The 
average running time for case one equals 0.8 and for case 2 equals 2.4 s. 
The IPIOA is clearly capable of solving the problem efficiently and often 

quickly. 

5.2. Testing for convergence 

In Table 3, com experiments are shown for the P-IV, Core 2 Duo 
parisons of genetic algorithm (GA), particle swarm optimization (PSO), 
and IPIOA under various case studies. Table 3 clearly shows IPIOA’s 
superiority to a variety of algorithms. 

5.3. Testing for robustness 

Table 4 and Table 5 show the results of testing each algorithm in the 
Islanding and non-Islanding scenarios. A total of one hundred tests were 
conducted using identical primary parents for all algorithms. A global 
optimal is more likely to be achieved with IPIOA because it enhances 
search efficiency. In Table 4 and Table 5, IPIOA shows higher precision 
compared to GA, PSO, and PIOA, and more tests reach optimal. Despite 
having a lower average running time compared to GA and a bit longer 
compared to PSO and PIOA, just 150 productions are needed for 
convergence. IPIOA, thus, has a shorter actual running time compared to 
different algorithms. 

6. Conclusions 

This article proposes a novel sustainable energy management 
framework for the MGs in an urban area aiming to maximize the sus
tainability of the system. To this end, digital twin modeling is used for 
reinforcing the ESS performance through the charging and discharging 
processes by providing accurate data of the system for the battery. 

Due to the model complex structure, the IPIOA method is presented 
in the study for solving the EM method for MGs using ESSs and RERs 
over 24 h in several scenarios. The EM method consists of a multi-power 

Fig. 3. Load demands during 24 h.  

Fig. 4. The expected WT speed during 24 h.  

Fig. 5. The expected PV irradiation during 24 h.  

Fig. 6. The power supply model for the non-Islanding case study.  
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Fig. 7. The power supply model for the stand-alone case study.  
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dispatch scheme that uses an electrical connection among the MGs and 
utilities as a means of exchanging energy. This paper evaluates the two 
Islanding and non-Islanding case studies under various TOU programs 
with the aim of minimizing MG operating prices. Here, an IPIOA was 
employed for analyzing the performance of standard distribution sys
tems, taking various technical limitations into account. A number of 
optimization problems can be improved by IPIOA. The RER and ESSs are 
operated in Islanding and non-Islanding scenarios using digital twin 
simulations in order to optimize the planning of agents in MGs’ EM. A 
lower voltage distribution system has been used to demonstrate and test 
IPIOA efficiency. MG EM can be effectively carried out based on the 
outcomes presented here. In addition, it could be followed the suggested 
methods to improve the financial efficiency of MGs for the energy sector. 
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