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Abstract. The probe-and-drogue autonomous aerial refueling (AAR) needs the
drogue’s high-precision pose information in the docking. This paper proposes a
novel optimized pose estimation method to improve the basic RPnPmethod’s per-
formance. To be specific, theRPnPmethod is adopted to estimate the drogue’s real-
time pose. Then, according to the reprojection error, the comprehensive learning
pigeon-inspired optimization (CLPIO) is constructed to optimize the rotation axis
selection of RPnP. The comprehensive learning (CL) strategy enhances the swarm
diversity of the basic PIO, which can effectively avoid the algorithm trapping into
the local optimum. The simulation results are given to prove the effectiveness of
the proposed optimized RPnP method.

Keywords: Autonomous aerial refueling (AAR) · Comprehensive learning
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1 Introduction

Unmanned aerial vehicle (UAV) has been extensively applied to contemporary combat
tasks, such as target tracking [1], cooperative attack [2], surveillance [3], and so on.
To handle the conflict of the UAV endurance and payload, autonomous aerial refueling
(AAR) [4] is regarded as a valid approach to deal with the abovementioned conflict
for UAVs. In general, three approaches for aerial refueling are adopted: probe-and-
drogue refueling (PDR) [5], boom-receptacle refueling (BRR) [6], and mixed refueling
of PDR and BRR. Among the three aforementioned approaches, the PDR is superior
in the aspects of the UAVs refueling together, wide-range refueling keep position, etc.
Therefore, we mainly concentrate on the RDR technique.

In the docking process, due to the hose’s flexibility, the multiple wind disturbances
induce the hose and drogue to swing randomly all the time. Thus, the drogue’s real-time
high precision pose information is fundamentally required for the AAR docking. Com-
pared with INS and DGPS, the vision navigation approach with a cheaper camera can
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satisfy the demands of the navigation’s submeter-level accuracy and anti-electromagnetic
interference ability. In the vision navigation system, the high-precision pose estimation
method is the essential part. Among the pose estimation methods, Fischler et al. [7]
firstly presented the perspective-n-point (PnP) approach to restore the pose information
relying on the corresponding relation of the 3D points to 2D points. Lepetit et al. [8]
developed the efficient perspective-n-point (EPnP) method to enhance the estimation
precision of the PnP method, but the EPnP method was too complicated. Besides, the
Levenberg-Marquardt (LM) method [9] was proposed by absorbing the advantage of
solving the second derivative of the Hessian matrix through the Gauss-Newton method.
Lu et al. [10] developed the Lu-Hager-Mjolsness (LHM)method, which was regarded as
an efficient iterative pose estimation method. Moreover, a robust noniterative solution of
PnP problem (RPnP) was proposed by Li et al. [11], which can realize the high-precise
pose estimation using less computational complexity. Thus, we adopt the RPnP method
to calculate the drogue’s pose information in this paper. However, the rotation axis selec-
tion of the RPnP method affects a lot on the capability of pose estimation. Therefore,
the modified pigeon-inspired optimization (PIO) algorithm is proposed to optimize the
rotation axis of the RPnP method.

The PIO algorithm was first developed by Duan and Qiao [12] for path planning.
Hereafter, the PIO algorithm has caught much attention in many practical applications.
Li et al. [13] dealt with the UAV target detection problem via the edge potential function
and a modified PIO. In [14], the multi-objective social learning PIO was presented to
construct the obstacle avoidance approach for UAVs. Besides, the cooperative search-
attack planning problem of UAVs was handled using a dynamic discrete PIO algorithm
[2]. In this paper, the comprehensive learning (CL) strategy [15] is introduced into the
basic PIO, called the comprehensive learning PIO (CLPIO), which can improve the
swarm diversity of the original PIO. Thus, the CLPIO algorithm reduces the probability
of trapping into the local optimum.

In this paper, an optimized RPnP method is developed to obtain the drogue’s high-
precision pose information for the AAR vision navigation system. We organize the
remaining part of the paper as follows. In Sect. 2, theCLPIO algorithm is given. Section 3
presents the optimized RPnP method. Then, the simulation results are exhibited and
discussed in Sect. 4. Section 5 summarizes this paper.

2 CLPIO Algorithm

2.1 PIO Algorithm

Motivated by long-and-close distance navigation mechanism of the homing pigeons,
Duan andQiao [12] first propose the original PIO algorithm constituted by two operators,
i.e.,map and compass operator, and landmarkoperator. The former operator simulates the
pigeon’s sun, magnetic field navigation of long distance. The latter operator is motivated
by the landmark navigation of pigeons’ vision in close distance. The pigeons’ homing
behaviors represent the optimization processes to search the optimal solution.
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(1) Map and compass operator:

The pigeons’ velocity V t
i =

[
vti,1, v

t
i,2, · · · , vti,D

]
and position Xt

i =[
xti,1, x

t
i,2, · · · , xti,D

]
at current generation are defined beforehand. Then, we calculate

the pigeons’ velocities, positions as follows [5, 12]:

V t
i = e−R·t · V t−1

i + rand ·
(
Xgbest − Xt−1

i

)
(1)

Xt
i = Xt−1

i + V t
i (2)

where t is the generation number, R denotes the speed factor, rand denotes the random
number, rand ∈ [0, 1], Xgbest is the pigeons’ global optimal position, the pigeons’
number is Np, i = 1, 2, · · · ,Np.

(2) Landmark operator:
In the visual navigation processes, half of the pigeons will be eliminated due to

loss of the optimization ability. The update rule of this operator is described as that the
positions of pigeons follow the rest pigeons’ center. Therefore, the pigeons’ positions at
current generation are calculated by [5, 12].

Nt
p =

[
Nt−1
p

2

]
(3)

Xt−1
c =

Nt−1
p∑
i=1

Xt−1
i · fitness

(
Xt−1
i

)

Nt−1
p∑
i=1

fitness
(
Xt−1
i

) (4)

Xt
i = Xt−1

i + rand ·
(
Xt−1
c − Xt−1

i

)
(5)

where [·] is the ceil value of input number, Nt
p, N

t−1
p denote the number of the pigeons

at two successive generations, Xt−1
c denotes the pigeons’ center position, fitness(·) is

the function for calculating the fitness values. This paper adopts the reprojection error
as the fitness function, which will be minimized to optimize the RPnP method.

2.2 CLPIO Algorithm

The CL strategy [15] is adopted to improve the original PIO algorithm’s swarm diversity,
which enhances the algorithm’s exploration ability in essence. Instead of only learning
from the pigeon’s own best position, the current pigeon follows the different pigeons’
best positions for each dimension. The update exemplars are produced through the CL
strategy as for the pigeons’ learning objects.
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(1) Modified map and compass operator:
The pigeons’ velocities for each dimension are calculated using the followingEq. (6).

vti,d = vt−1
i,d · e−R·t + rand1i,d ·

(
xpbestd ,fi(d)

− xt−1
i,d

)
+ rand2i,d ·

(
xgbest,d − xt−1

i,d

)
(6)

where d denotes the current dimension number, xpbestd ,fi(d)
is the position of the update

exemplar, fi(d) is the update exemplar, fi(d) = [
fi(1), fi(2), · · · , fi(D)

]
determines that

the current pigeon learns from another’s or its own best positions in the d-th dimension.
fi(d) is decided based on the learning probability value Pc. The current pigeon’s Pci,d
value for current dimension is calculated by:

Pci,d = ap + bp · e
10 · (i − 1)/

Np − 1 − 1

e10 − 1
(7)

where ap, bp denote the learning probability coefficient. If randi,d > Pci,d , the
current pigeon’s current dimension will follow its own best position. Otherwise, if
randi,d ≤ Pci,d , the current pigeon’s current dimension will follow the best position
of another pigeon. We determine the specific exemplar through the procedure of com-
parison selection. Besides, we update the learning exemplar when the fitness values of
current pigeon are not promoted at a few continuous generations.

(2) We do not modify the original landmark operator.

3 Optimized RPnP Pose Estimation Method

The basic RPnPmethod is a robust noniterative pose estimationmethod. For thematched
markers, a line connecting two markers needs to be selected as the rotation axis, which
is denoted as

−−−→
Pi0Pj0. Then, we select the midpoint of

−−−→
Pi0Pj0 as the original point to build

a new reference frameOaXaYaZa. The Za-axis holds the same direction as
−−−→
Pi0Pj0. Next,

the markers’ world coordinates will be transformed to the new coordinates inOaXaYaZa.
To choose the axis of rotation (i.e., Za), a series of subsets are constructed by taking

arbitrary three markers of the point set. Every subset is able to establish a quartic poly-
nomial according to the triangular geometry principle. Next, the least-squares residual
method is employed to search the minimal value of all quartic polynomials’ sum-of-
squares. Then, the deepness of Pi0 and Pj0 can be obtained using the existent method

[16]. Thus, we denote the rotation axis Za as Za = −−−→
Pi0Pj0

/∥∥∥−−−→
Pi0Pj0

∥∥∥.
When the Za-axis is obtained, we calculate the rotation matrix using (8), which

transforms OaXaYaZa to the camera’s reference frame.

R = R
′
rot(Zc, α) =

⎡
⎣
r1 r4 r7
r2 r5 r8
r3 r6 r9

⎤
⎦

⎡
⎣
cosα − sin α 0
sin α cosα 0
0 0 1

⎤
⎦ (8)

where R
′
denotes an orthogonal rotation matrix,

[
r7 r8 r9

]T
is the same as Za, rot(Zc, α)

denotes the action that rotates α degrees around Zc-axis. Based on the pinhole imaging



Optimization for Autonomous Aerial Refueling 6121

principle, we project the 3-D markers to the 2-D image plane using (9).

λi

⎡
⎢⎣
ui
vi
1

⎤
⎥⎦ =

⎡
⎣
r1 r4 r7
r2 r5 r8
r3 r6 r9

⎤
⎦

⎡
⎣
cosα − sin α 0
sin α cosα 0
0 0 1

⎤
⎦

⎡
⎢⎣
xi
yi
zi

⎤
⎥⎦ +

⎡
⎢⎣
tx
ty
tz

⎤
⎥⎦ (9)

where
[
ui vi 1

]T
is the normalized pixel coordinate,

[
xi yi zi

]T
is the markers’ coordi-

nates inOaXaYaZa, the translation vector is presented as t, t = [
tx ty tz

]T
. The singular

value decomposition (SVD) [11] approach is applied to acquire the solution of Eq. (9),
and further we can get the variables vector

[
cosα sin α tx ty tz 1

]
. Finally, the markers’

rotation matrix R and the translation vector t will be acquired.
Assuming that there are nmarkers, the basic RPnP method chooses one rotation axis

among the n(n − 1)
/
2 segments by calculating the corresponding projected lengths

in the pixel plane. However, the computational process is not only complex but not
optimal. The CLPIO algorithm is adopted to optimize the rotation axis of the RPnP
method. The optimized RPnP method takes the reprojection error as the fitness function.
After obtaining R and t, we reproject the markers’ world coordinates to the pixel plane.
Through comparing the reprojected pixel coordinates and the original pixel coordinates,
we find the minimum projection error among all the possible rotation axes, which is
adopted as the optimized rotation axis for pose estimation.

4 Simulation Results and Analysis

Several simulations are implemented to verify the effectiveness of the proposed opti-
mized RPnP pose estimation method. We construct the simulation scenes satisfying the
following conditions: 1) the number of markers changes from three to thirty; 2) the world
coordinates corresponding to the markers are coplanar; 3) for a fixed number of markers,
30 sets of data are generated for pose estimation. We give the simulation parameters in
Table 1.

Table 1. Parameters of simulations.

Parameters Description Value

Np Pigeons’ number 10

T1max Maximum iteration of map and compass operator 7

T2max Maximum iteration of landmark operator 3

R Speed factor 0.2

D Search space’s dimension 2

ap, bp Learning probability coefficient 0.1, 0.25
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Figure 1 illustrates the pose estimation errors for the RPnP and optimized RPnP
method.Aswe can see that though the basic RPnPmethod has a goodmeasurement accu-
racy, the optimized RPnP method further enhances the measurement accuracy, which
demonstrates that the original selection criterion of the rotation axis is not optimal.
Figure 2 gives the time costs for the RPnP and optimized RPnP methods. In comparison
with the basic RPnP approach, the optimized RPnP method’s time costs increase in an
acceptable range. The reason is that the optimal rotation axis is determined by several
pose estimation processes using the CLPIO algorithm. The proposed optimized RPnP
method improves the pose estimation accuracy at a small time cost.
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Fig. 1. Pose estimation errors for the RPnP and optimized RPnP methods.
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5 Conclusions

This paper develops an optimized RPnPmethod to acquire the high-precision pose infor-
mation for AAR docking. The CL strategy is introduced into the basic PIO algorithm,
called as CLPIO algorithm, to increase the global optimization capability. Then, the
CLPIO algorithm is adopted to tackle with the optimal selection problem of the RPnP
method’s rotation axis according to the reprojection error of pose estimation. The sim-
ulation results show that the proposed optimized RPnP method can realize the higher
precision pose estimation by increasing a little time cost, which verifies the proposed
method’s effectiveness. We will try to employ the proposed method to the real-time
vision navigation system in the future.
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