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Abstract: An adaptive learning pigeon-inspired optimization based on mutation disturbance (ALPIO)
is proposed for solving the problems of fuel consumption and threat avoidance in spacecraft cluster
orbit reconstruction. First, considering the constraints of maintaining a safe distance between adjacent
spacecraft within the spacecraft cluster and of avoiding space debris, the optimal performance index
for orbital reconfiguration is proposed based on the fuel consumption required for path planning.
Second, ALPIO is proposed to solve the path planning. Compared with traditional pigeon-inspired
optimization, ALPIO uses the initialization of chaotic and elite backward learning to increase the
population diversity, using a nonlinear weighting factor and adjustment factor to control the speed
and accuracy of prepopulation convergence. The Cauchy mutation was implemented in the map
and compass operator to prevent the population from falling into local optima, and the Gaussian
mutation and variation factor were utilized in the landmark operator to prevent the population from
stagnating in the late evolution. Through simulation experiments using nine test functions, ALPIO is
shown to significantly improve accuracy when obtaining the optimum compared with PSO, PIO, and
CGAPIO, and orbital reconfiguration consumes less total fuel. The trajectory of path planning for
ALPIO is smoother than those of other optimization methods, and its obstacle avoidance path is the
most stable.

Keywords: spacecraft cluster; pigeon-inspired optimization; avoiding obstacles; path planning

1. Introduction

In recent years, space technology has rapidly developed, and traditional individual
spacecraft can no longer complete complex space missions. Spacecraft clusters have the
advantages of high flexibility, low cost, and high reliability. Therefore, the application and
development of spacecraft clusters, such as the EDSN project [1] and ANTS [2] program
proposed by NASA and the L5SWS plan proposed by the Keck Institute in the United
States [3], have received much attention.

A spacecraft cluster [4–6] is composed of multiple small satellites with limited pay-
loads, and there are no fuel refueling stations in space. Every maneuver during a mission
must involve careful planning to maximize the on-orbit runtime by minimizing fuel con-
sumption [7]. Currently, orbital transfers and space docking tasks are becoming more
frequent, and tasks need to be performed after careful consideration of both fuel consump-
tion and threat evasion. The number of space objects in Earth’s orbit is increasing year by
year, of which nearly 70% operate in low orbits, and this dynamically changing and dan-
gerous environment poses an immense threat to spacecraft [8]. The study of path planning
has an important role in both active protection of spacecraft and effective completion of
space missions. A current challenge in path planning is how to obtain the optimal path
that consumes the least fuel while being able to evade threats.

To achieve optimal path planning, many researchers have developed new intelligent
bionic algorithms, such as ant colony optimization [9] and particle swarm optimization
(PSO) [10]. PIO, first proposed by Duan in 2014 [11], has the advantages of simple structure,
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fast convergence speed, and strong robustness [12]. However, when solving the problem of
complex optimization, the accuracy of convergence of the algorithm is not high due to the
lack of diversity in the early stage of the iterations of the algorithm, the low search ability
of the population, and the tendency to fall into local optima.

Presently, there are many ways to improve the traditional PIO. For example, QPIO [13]
and QCPIO [14] introduce quantum behavior in the search for the optimal position of
pigeons to solve the problem of PIO falling into local optima. IPIO [15] uses optimized
weights to replace the map and compass factor of the traditional PIO to improve its global
search ability in the prepopulation period. PCPIO [16] uses the mutation and crossover
strategies of the genetic algorithm [17] in the first stage of PIO, which increases the diversity
of the population and allows the pigeon flock to jump out of local optima. PCHS-PIO [18]
performs a hierarchical search in the iterations of the algorithm, completing two stages of
iteration for the population with global search ability, and uses a small-scale fine search for
the pigeon flock with only local search ability, which improves the convergence speed of
the algorithm.

The above improved algorithm is only an improvement on one of the defects of the
PIO. In this paper, an adaptive learning pigeon-inspired optimization based on muta-
tion disturbance (ALPIO) is proposed to address the problems of uneven pigeon flock
distribution, premature convergence, ease of falling into local optima, and population
evolution stagnation in later iterations. Chaotic and elite backward learning initialization
are proposed to increase the diversity of the prepopulation, and a nonlinear weighting
factor and adjustment factor are employed to control the prepopulation convergence speed
and improve the convergence accuracy. The Cauchy Mutation is utilized in the map and
compass operator to prevent the population from falling into local optima. This paper
aims to solve the optimal path planning problem in the orbit reconstruction of a spacecraft
cluster. ALPIO is used to find the optimal path planning in order to plan a smooth trajectory
with faster convergence speed while satisfying the need for the spacecraft cluster to both
avoid threats and reduce fuel consumption.

The rest of this paper is organized as follows. The relative motion model of the
spacecraft is established in Section 2. In Section 3, the optimal fitness function is designed
to avoid threats and reduce fuel consumption in the path planning of spacecraft cluster
orbit reconstruction. Section 4 introduces ALPIO. In Section 5, the orbital reconfiguration
of a spacecraft cluster is implemented using ALPIO to compare the fuel consumption,
convergence variation of fitness values, smoothness of paths, and effectiveness of threat
avoidance in path planning simulations with PIO, PSO, and CGAPIO. Section 6 concludes
the paper.

2. Relative Motion Model of Spacecraft
2.1. Coordinate System of Relative Motion

In the study of the relative motion of spacecraft, the following model is established.
The main spacecraft is A, the accompanying spacecraft is B, the size of the spacecraft is
disregarded, and the earth is regarded as a uniform sphere. The relative motion model of
spacecraft A and B in space is shown in Figure 1.

As shown in Figure 1, the geocentric inertial coordinate system is O–XYZ, the origin
is the geocenter O, the X axis is located in the equatorial plane, the direction points to
the vernal point, the Z axis points to the North Star, and the Y axis is determined by the
right-hand rule. The relative motion coordinate system of the main spacecraft is A–xyz, the
origin is A, and the x axis is located over the geocenter, which points to the origin A. The y
axis is perpendicular to the x axis and points to the motion direction of the main spacecraft,
the z axis is determined by the right-hand rule, the relative positions of spacecraft A and
B to the geocenter O are rA and rB, respectively, and r is the relative position vector of
spacecraft A and B.
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Figure 1. Spacecraft relative motion coordinate system.

2.2. Relative Motion Equation

We assume that the reference orbit of the spacecraft is a near-Earth circular orbit
without considering any perturbation and that the magnitudes of the relative positions of
the spacecraft are much smaller than their distance to the center of Earth. On the one hand,
because the spacecraft cluster reconstruction is generally completed within one orbital cycle,
the impact of the error dispersion over time due to the nonlinear term in the C-W equation
is limited and satisfies the conditions for the application of the C-W equation. On the
other hand, the C-W equation with relative position and relative velocity as state variables
is simpler than the model based on the orbital elements both in terms of calculating the
fuel consumption required for the reconfiguration path and in constructing the avoidance
risk of the spacecraft. The relative motion of the spacecraft is described by the following
C-W equation: 

ẍ− 2nẏ− 3n2x = ux
ÿ + 2nẋ = uy
z̈ + n2z = uz

(1)

where n is the angular velocity of the spacecraft and ux, uy, and uz are the triaxial compo-
nents of acceleration.

When t = 0, the state of the spacecraft is [x, y, z, ẋ, ẏ, ż]T = [x0, y0, z0, ẋ0, ẏ0, ż0]
T . When

[ux, uy, uz] = [0, 0, 0], the position of the spacecraft in the relative motion coordinate system
is expressed as follows:

x(t) =
ẋ0

n
sin nt− (

2ẏ0

n
+ 3x0) cos nt + 2(

ẏ0

n
+ 2x0) (2)

y(t) = 2(
2ẏ0

n
+ 3x0) sin nt +

2ẋ0

n
cos nt− 3(ẏ0 + 2nx0)t + (y0 −

2x0

n
) (3)

z(t) =
ż0

n
sin nt + z0 cos nt (4)

3. Path Planning Fitness Function Design

In the study of the path planning of spacecraft cluster orbit reconstruction, each
maneuver of the spacecraft during orbit transfer changes the instantaneous velocity, which
directly affects the fuel consumption. We set the optimal fitness value as meeting the
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optimum of avoiding threats while consuming the least amount of fuel, and constructed a
diagram of the fitness function for path planning, which is shown in Figure 2.

Optimal path planning

Consume minimal fuel

Spacecraft cluster reduces 

instantaneous speed 

changes during maneuvers

Collision probability 

constraint

Threat distance constraint

Stay safe between 

spacecrafts of cluster

Spacecraft cluster 

avoids space debris

Figure 2. Diagram of fitness function for path planning.

3.1. Performance Index Based on Fuel Consumption

The waypoints are discretized and the fuel consumption during maneuvering is
represented by calculating the speed increment ∆v(i) at the ith discrete point. The velocities
v(i)− and v(i)+ before and after the maneuver at the ith discrete point are expressed
as follows: {

v(i)− = φvr(t)P(i− 1) + φvv(t)v(i− 1)+

v(i)+ = −φrv
−1(t)φrr(t)P(i)

(5)

where the position of the ith discrete point in the relative motion coordinates is P(i),
and φvv(t), φrr(t), φvr(t), and φrv(t) are the following C-W matrices:

φvv(t) =

 cos nt 2 sin nt 0
−2 sin nt 4 cos nt− 3 0

0 0 cos nt

 (6)

φrr(t) =

 4− cos nt 0 0
6(sin nt− nt) 1 0

0 0 cos(nt)

 (7)

φvr(t) =

 3n sin nt 0 0
6n(cos nt− 1) 0 0

0 0 −n sin nt

 (8)

φrv(t) =

 1
n sin nt 2

n (1− cos nt) 0
2
n (cos nt− 1) 1

n (4 sin nt− 3nt) 0
0 0 1

n sin nt

 (9)

Because the continuous small thrust provides less thrust, the orbit change time is
longer, and the spacecraft cluster can be expected to complete the orbit reconfiguration in a
shorter time during the mission. Therefore, this paper considers the use of impulse thrust.
Assuming that the number of impulses is d, the speed increment at the ith pulse point is
∆v(i) = v(i)+ − v(i)−. Using the form of the speed increment as a performance index of
fuel consumption, the total speed increment in the path is expressed as follows:

F1(i) =
d

∑
i=1
‖∆v(i)‖ (10)
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3.2. Constraints
3.2.1. Keeping a Safe Distance Between Two Spacecraft Inside the Cluster

To avoid collisions between spacecraft and the interior of the cluster, it is necessary
to design the function of safety fitness to establish the minimum safe area. Orbit recon-
struction is completed in low orbit, as the spacecraft cluster can accurately calculate the
relative position, relative velocity, and relative position covariance matrix of the rendezvous
spacecraft during the rendezvous. The collision probability is employed as a constraint to
prevent collision within the spacecraft cluster [19]. Selecting the two spacecraft in Figure 1
as an example, when calculating the collision probability, the rendezvous spacecraft A and
B are regarded as spheres and the radii are RA and RB, respectively. Next, the safe radius
of the total envelope sphere at the time of the rendezvous is Rsa f e = RA + RB.

Because the relative position of the spacecraft reaches the minimum during the ren-
dezvous, the relative velocity vector is zero. Therefore, instead of considering the position
error due to the direction of the relative velocity, only the collision probability of the space-
craft in the rendezvous plane is considered. As shown in Figure 3, the error ellipse is
obtained by projecting the joint error ellipsoid of the intersecting coordinate system onto
the rendezvous plane. The origin of the rendezvous plane is defined as the centroid of
the enveloping sphere, and the directions of the horizontal axis xe and vertical axis ye
are parallel to the semimajor axis τx of the ellipse and short semiaxis τy of the ellipse,
respectively. When the distance between the center of mass of the rendezvous sphere and
the center of mass of the ellipse is less than Rsa f e, this is considered as the two spacecraft
colliding. The collision probability P on the rendezvous plane is expressed as follows:

P =
1

2πεxεy

∫∫
S

exp

{
−1

2

[
(xe − τx)

2

εx2 +
(ye − τy)

2

εy2

]}
dxedye (11)

where S is the area of x2
e + y2

e ≤ Rsa f e and εx and εy are the standard deviations of the
position error on the coordinates of the rendezvous plane.

ex

ey

safeR

ye

xe
yt

xt

Figure 3. Schematic of the projection of the joint error ellipsoid in the rendezvous plane.

3.2.2. Spacecraft Maintain a Safe Distance Constraint from Other Space Targets

The amount of space debris has dramatically increased in recent decades [20], and
spacecraft missions must consider avoiding both other satellites and space debris, which
can pose a great threat to the spacecraft orbit transfer process [21]. However, the motion
of space debris is extremely irregular [22–24], and the relative position, relative velocity,
and relative position covariance matrix between space debris and spacecraft cannot be
accurately calculated. Using the collision probability in Section 3.2.1 will inevitably cause
false alarms [25], resulting in spacecraft performing unnecessary maneuvers in the safe
area and consuming additional fuel. In this paper, irregularly shaped space debris are
regarded as dangerous areas, and spacecraft can use detection equipment such as lasers or
microwave radar to estimate their position. Because the detected dangerous areas have
errors, we chose to expand the dangerous area into a sphere appropriately, a strategy that
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can further ensure the safety of the path. Figure 4 depicts the relationship between the path
and the dangerous area; (xi, yi, zi) and (xi+1, yi+1, zi+1) are the locations of the adjacent
maneuver points of the spacecraft, and we use five break points to calculate the threat cost
of the path between adjacent maneuver points. The advantage of performing segmentation
is to simplify the calculation of the threat cost F2(i). Strictly speaking, the spacecraft do
not maneuver at these five break points. The motion of the spacecraft cluster when no
maneuvering occurs satisfies Equations (2)–(4).

Dangerous area

d0.1,j
(xi+1,yi+1,zi+1)

(xi,yi,zi)

(a)

Dangerous area

d0.1,j

(xi+1,yi+1,zi+1)

(xi,yi,zi)

(b)

Figure 4. (a) Path entering the dangerous area and (b) path not entering the dangerous area.

The function of the safety fitness to avoid other targets in space is defined as follows: F2(i) = m1T−in(i) + m2T−out(i) + m3dis tan ce(i)

dis tan ce(i) =
n
∑

k=0
Li,k

(12)

where m1 + m2 + m3 = 1, Li,k is the length of the jth planning segment of the ith discrete
point, T−in represents the dangerous distance from the ith discrete point to the (i + 1)th
discrete point line segment entering the dangerous area, and T−out is the dangerous distance
from the ith discrete point line segment that does not enter the dangerous area to the (i+ 1)th
discrete point line segment that does not enter the dangerous area. The relevant parameters
are expressed as follows:

T_in(i) =


Li,j
5 tj

E
∑

j=1
( 1

d4
0.1,j

+ 1
d4

0.3,j
+ 1

d4
0.5,j

+ 1
d4

0.7,j
+ 1

d4
0.9,j

),
∣∣xi − Tj

∣∣ < Rj

0,
∣∣xi − Tj

∣∣ ≥ Rj

(13)

T_out(i) =

 tj
E
∑

j=1
( 1

d4
0.1,j−R4

j
+ 1

d4
0.3,j−R4

j
+ 1

d4
0.5,j−R4

j
+ 1

d4
0.7,j−R4

j
+ 1

d4
0.9,j−R4

j
),

∣∣xi − Tj
∣∣ > Rj

0,
∣∣xi − Tj

∣∣ ≤ Rj

(14)

where E represents the number of dangerous areas and tj, Tj, and Rj are the threat level,
center position, and radius of the jth space debris, respectively.

The path planning expects the fuel consumption function F1(i) to be minimal, and in
order for the spacecraft to avoid the threat constraint the collision probability P must be less
than the safety threshold and the threat distance F2(i) must be greater than the radius of
the dangerous area. The interior-point penalty function is employed to solve the objective
optimization with constraints [26]. The function of the fitness of path planning is expressed
as follows:

F(i) = F1(i) + J{[min(0, log
Pmax

max(Pn(i))
)]2 + [min(0, log

min(F2(i))
Rj

)]2} (15)
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where J is the penalty coefficient, Pmax is the threshold of collision probability, and
max(Pn(i)) represents the maximum probability of collision between adjacent spacecraft.

4. ALPIO for Path Planning
4.1. ALPIO Algorithm Structure

We propose using the ALPIO algorithm to solve the optimal spacecraft cluster orbit
reconstruction path planning designed in Section 3. Section 4 mainly introduces ALPIO,
which is an improvement on the shortcomings of the traditional PIO. The block diagram of
ALPIO is shown in Figure 5.

Start
Parameter 

initialization

Nonlinear adaptive weight 

factor w and adjustment 

factor C

Implementing Cauchy 

Mutation on local optimum

Map and Compass 

Operator

Implement Gaussian Mutation 

and variation factor B

The fitness value changes 

slowly continuously?

The first stage of ALPIO

ALPIO Initialization

Elite backward learning  updates 

chaotic initialized population

Chaotic initialization 

pigeon flock

location

Update fitness value

End of iteration of Map and 

Compass Operators?

Update fitness value

Landmark Operator

Update fitness value

Update fitness value

t+1

Landmark Operator iteration 

ends?

End

Y

Y

N

N

The second stage of ALPIO

Y

N

Figure 5. Block diagram of ALPIO.

4.2. Initialization Based on Tent Map Chaotic and Elite Backward Learning

Compared with random numbers, tent map chaos has better coverage and diver-
sity and allows the positions of the pigeons to be uniformly distributed around the
optimum [27]. The mathematical formula model is expressed as follows:

Yi+1 = a(1− 2|Yi − 0.5|), i = 0, 1, 2, . . . (16)

where a is the mapping parameter of the tent map, a ∈ (0, 4). Yi is the mapping of the tent
map, and 0 < Yi < 1.

To further increase the diversity of the population, we selected the elite backward
learning strategy to update the position of the initial chaotic population [28] to bring the
initial population closer to the global optimum. The position of the ith chaotic initial indi-
vidual in D-dimensional space is defined as Xi,j = [Xi,1, Xi,2 . . . , Xi,D], and elite backward
learning is defined as follows:

Xi,j = rand(Xi,j min + Xi,j max)− Xi,j min (17)
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where rand is a random number between 0 and 1 and Xi,j min and Xi,j max represent the
minimum value and maximum value, respectively, of the boundary of the solution.

When Equation (17) is outside the boundary of the solution, the elite backward solution
is reset as follows:

X∗i,j = rand(Xi,j min + Xi,j max) (18)

Here, the fitness values corresponding to individuals Xi,j and X∗i,j are defined as F(i)
and F∗(i), respectively. Consider that when F∗(i) < F(i), the individual position X∗i,j
replaces Xi,j, while otherwise the individual position takes Xi,j.

4.3. Nonlinear Adaptive Strategy to Improve Convergence Accuracy

The first stage of the PIO is the map and compass operator, and the mathematical
model of the speed and position of the ith pigeon in D-dimensional space are expressed
as follows:

VNC
i,j = VNC−1

i,j × e−R×NC + rand(Xg − XNC−1
i,j ) (19)

XNC
i,j = XNC−1

i,j + VNC
i,j (20)

where R is the compass factor, NC is the number of current iterations, and Xg represents
the local optimal solution.

The first stage is a rough search process, and the individual with the best fitness value
is determined by comparing the positions of the pigeons. After the operator completes
the iteration, it enters the Landmark Operator; VNC−1

i,j × e−R×NC represents the speed and
direction of the pigeon, which affects the subsequent process of obtaining the optimum for
the population. Because the compass factor R is a constant value, when R = 0.6, NC = 10,
e−R×NC ≈ 0, and the algorithm stops the global search, it is easy to fall into a local optimum.
When R = 0.03, the convergence speed is very slow, which reduces the search ability of
the population in the early stage. To balance the relationship between the population
convergence speed and the global search ability, we introduce a nonlinear adaptive weight
factor w instead of e−R×NC. The inertial weight linear decreasing method proposed by Shi
is widely utilized to solve the algorithm’s convergence [29]; its formulation is expressed
as follows:

wNC
1 = wmax − (wmax − wmin)

NC
T1

(21)

where T1 represents the number of iterations of the map and compass operator.
With the aim of establishing a dynamic optimization process of pigeon flocks to avoid

falling into local optima, this paper proposes the following two nonlinear decreasing weight
factors: {

wNC
2 = wmax exp((ln k)/(ln wmin

NC
wmax

T1
))

wNC
3 = (wmax − wmin)(1− (NC

T1
)γ)

1
γ + wmin

(22)

Assuming that the number of iterations is 100, the dynamic changes of the three
adaptive weight factors are shown in Figure 6.

Figure 6 shows that the value of w3 is large in the early stage and slowly changes,
which is beneficial to the global search of the population. Furthermore, the fast convergence
of the option value in the later period is conducive to the algorithm jumping out of the local
search, which ensures the global optimization ability of the algorithm. For these reasons,
w3 is chosen as the nonlinear adaptive weight factor.
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Figure 6. Schematic of different weighting factors.

While weighting the early convergence speed and global search ability, we introduce
the sine adjustment factor C to control the influence of the local optimal solution on the
population position in the next iteration.

C = sin(
NC
T1
· π

2
) (23)

After introducing the nonlinear adaptive weight factor w and adjustment factor C,
Equation (19) is updated as Equation (24):

VNC
i,j = VNC−1

i,j (α + βw) + (α + βC) · rand · (Xg − XNC−1
i,j ) (24)

where α + β = 1.

4.4. Cauchy Mutation Strategy for Avoiding Local Optima

The purpose of the rough search in the first stage is to guide the pigeons to quickly
identify the optimal position without arriving at the optimal position directly.

As shown in Figure 7, the current individual position Xi is the first to approach the
local optimal value in the process of identifying the optimum, while the population is
gathered near the local optimal value. Applying mutation to the current position cannot
directly reach the global value beyond the local optimal value. Because a characteristic
of the Cauchy mutation function is that the extreme value at the origin is small and the
distribution at both ends is relatively long, the implementation of Cauchy mutation for the
local optimal value can cause the population to jump out of the local optimum. The function
of the Cauchy mutation is defined as follows:

f (x) =
1
π
× m

m2 + x2 , x ∈ (−∞,+∞) (25)

To solve the situation in which the optimization parameters jump outside of the
boundary value, we introduce a percentage to describe m in the Cauchy mutation:∫ xmax

xmin

1
π

m
m2 + x2 dx =

1
π

arctan
x
m
∣∣xmax
xmin

= percent (26)

m =
xmax − xmin

2 tan percent×π
2

(27)

After introducing the Cauchy mutation in Equation (24), it can be updated as Equation (28):
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VNC
i,j = VNC−1

i,j (α + βw) + (α + βC) f1(Xg + m× tan[π( f2 − 0.5)]− XNC−1
i,j ) (28)

where f1 and f2 are random numbers between 0 and 1. A new dynamic selection strategy
is proposed to further improve the performance of the algorithm for determining the
optimum. When the population stagnates for a long time, the fitness value updates for
twenty consecutive iterations and does not exceed 0.01, indicating that the population
is likely to fall into a local optimum. Next, the Cauchy mutation is imposed, that is,
Equation (28) is applied as the first stage of optimization; otherwise, Equation (24) is
applied. The advantage of this dynamic selection strategy is that it can accelerate the
convergence rate when it does not fall into the local optimum in the early stage.

Xi

Local optimal value

NC

F
it

n
es

s 
v

al
u

e

Global optimal value

Xi+1

Xi+n

Figure 7. Model diagram of the Cauchy mutation.

4.5. Gaussian Mutation Strategy to Prevent Population Evolution from Stagnation

The second stage of the PIO is the landmark operator. The number of pigeons in each
iteration is halved, and the center position of the remaining pigeons is used as a reference.
The mathematical model of the landmark operator is expressed as follows:

MNC
p =

MNC−1
p

2
(29)

XNC
c =

∑ XNC
i,j × F(XNC

i,j )

MNC
p ×∑ F(XNC

i,j )
(30)

XNC
i,j = XNC−1

i,j + rand× (XNC−1
c − XNC−1

i,j ) (31)

where MNC
p , XNC

c , and F(XNC
i,j ) are the number of individuals in the NCth iteration, the center

position of the remaining population, and the fitness function of the individual, respectively.
Because the pigeons entering the landmark operator are already near the global

optimal value, a fine search is needed, and the global optimal value can be reached without
too much mutation. Here, we employ Gaussian mutation at the center of the population
to solve the problem of late population evolution stagnation; the function of the Gaussian
mutation is expressed as follows:

N(x) =
1

σ×
√

2π
× exp(− (x− µ)2

2σ2 ) (32)

where µ and σ2 are the mean and variance, respectively.
By setting the function Q(x) = x−1, x ∈ [1, 50], as shown in Figure 8, it can be seen

that the value after adding Gaussian mutation to Q(x) slightly fluctuates around the
original value.
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Figure 8. Schematic of Gaussian mutation.

In the landmark operator, if the number of pigeons decreases too fast it can affect the
search. We therefore add the hyperbolic sine variation factor B to enhance the global search
ability of the pigeon. The formulation of the hyperbolic sine variation factor B is expressed
as follows:

B = 1− T2

5
× sinh

NC3

100× T3
2

(33)

where T2 is the number of iterations of the landmark operator.
After introducing the variation factor B and Gaussian mutation, the mathematical

model of the population position in Equation (31) is updated as follows:

XNC
i,j = XNC−1

i,j + B× (XNC−1
c × (1 + Gs(µ, σ2)− XNC−1

i,j )) (34)

where Gs(µ, σ2) is the Gaussian mutation.

4.6. Scheme of Path Planning of Orbit Reconstruction

In order to simplify the complexity of path planning, this paper takes the initial
position of each spacecraft in the LVLH coordinate system and the line where the target
position is located as the new xr axis, considers that the direction is from the initial position
to the target position, and uses the trajectory obtained via ALPIO to construct a new yr axis
and zr axis to describe the orbit reconstruction trajectory. The ALPIO algorithm realizes the
path planning process of spacecraft cluster orbit reconstruction, as shown in Figure 9.

Build a relative 

motion model

Construct function of 

individual fitness 

Construct the function 

of fuel consumption 

Construct an obstacle 

avoidance model

Stay safe between  

spacecraft of cluster 

ALPIO iterative 

process

Get the optimum for 

path planning

The optimum coordinates are 

inversely transformed to the LVLH 

coordinate system

End

Output reconstructed trajectory

Start

Spacecraft cluster 

avoids space debris

Figure 9. Flow chart of ALPIO for planning orbit reconstruction.
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5. Simulation Experiment and Result Analysis
5.1. Track Reconstruction Path Planning

In order to verify the convergence ability and stability of ALPIO, the minimum values
of nine benchmark functions, including single-peak and multipeak functions, were tested
in comparison with PSO, PIO, and CGAPIO. The number of populations for all four
algorithms was 30, the dimensionality was 20, the number of iterations for PSO was 100,
and the other algorithm parameters were as shown in Table 1. The test functions are shown
in Table 2.

Table 1. Parameters for initialization of the algorithm.

Parameter Expression Value

a Mapping parameter of Tent Map 1
X0 Initial value of Tent Map 0.32
wmin Minimum value of weighting factor 0.40
wmax Maximum value of weighting factor 0.90
γ Parameters of weighting factor 2.50
R Compass factor 0.30
T1 Number of iterations of Map and Compass Operator 60
T2 Number of iterations of the Landmark Operator 40

Table 2. Test functions.

Functions Expression Range Min

Sphere f1(x) = ∑D
i=1 x2

i [−100, 100] 0
Schwefel_2.21 f2(x) = max{|xi|} [−100, 100] 0
Schwefel_2.22 f3(x) = ∑D

i=1 |xi|+ ∏D
i+1 |xi| [−10, 10] 0

Setp f4(x) = ∑D
i=1 |xi + 0.5|2 [−100, 100] 0

Rastrigin f5(x) = 10D + ∑D
i=1 (x2

i − 10 cos(2πxi)) [−5, 5] 0

Ackley f6(x) = 20− 20 exp(−0.2
√

1
D ∑D

i=1 x2
i )−

exp( 1
D ∑D

i=1 cos(2πxi)) + e
[−40, 40] 0

Griewank f7(x) = 1
4000 ∑D

i=1 x2
i −∏D

i+1 cos( xi√
i
) + 1 [−600, 600] 0

Rosenbrock f8(x) = ∑D−1
i=1 [100(xi+1 − x2

i ) + (xi − 1)2] [−30, 30] 0
Apline f9(x) = ∑D

i=1 |xi sin(xi) + 0.1xi| [−10, 10] 0

The results of the function tests are shown in Table 3, and the data in Table 3 corre-
spond to the convergence curves in Figure 10. The standard deviation of ALPIO is the
smallest among the nine experiments, which indicates that ALPIO is more stable than other
optimization methods. By comparing the convergence minimum of the tested function
with the theoretical minimum, these results show the higher accuracy of convergence
with ALPIO.
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Figure 10. Cont.
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Figure 10. (a) Sphere, (b) Schwefel_2.21, (c) Schwefel_2.22, (d) Setp, (e) Rastrigin, (f) Ackley,
(g) Griewank, (h) Rosenbrock, (i) Apline.

Table 3. Results of the function test.

Functions Algorithm Min STD

Sphere

PSO
PIO

CGAPIO
ALPIO

2.22 × 10−5

1.21 × 10−2

6.17 × 10−6

8.94 × 10−9

3.27 × 100

2.65 × 101

2.83 × 10−2

1.22 × 10−5

Schwefel_2.21

PSO
PIO

CGAPIO
ALPIO

9.16 × 10−3

6.22 × 10−4

5.60 × 10−4

6.58 × 10−6

2.18 × 100

3.58 × 100

5.82 × 10−1

6.19 × 10−3

Schwefel_2.22

PSO
PIO

CGAPIO
ALPIO

5.99 × 10−2

2.65 × 100

2.45 × 10−3

1.28 × 10−5

7.32 × 10−1

3.82 × 100

2.54 × 10−2

7.21 × 10−4

Setp

PSO
PIO

CGAPIO
ALPIO

4.75 × 10−11

9.89 × 10−7

2.87 × 10−3

2.95 × 10−10

3.68 × 100

5.49 × 101

3.27 × 101

2.87 × 10−1

Rastrigin

PSO
PIO

CGAPIO
ALPIO

1.00 × 101

2.12 × 10−2

9.95 × 10−1

3.49 × 10−5

6.94 × 100

2.45 × 101

1.95 × 10−2

8.45 × 10−3

Ackley

PSO
PIO

CGAPIO
ALPIO

1.68 × 101

1.77 × 101

4.37 × 10−5

5.01 × 10−8

3.31 × 100

1.29 × 100

5.58 × 10−1

6.86 × 10−3

Griewank

PSO
PIO

CGAPIO
ALPIO

7.34 × 101

1.19 × 100

1.51 × 100

5.31 × 10−3

1.97 × 10−1

6.57 × 10−1

1.36 × 10−1

2.81 × 10−2

Rosenbrock

PSO
PIO

CGAPIO
ALPIO

1.18 × 102

2.83 × 101

1.90 × 101

1.00 × 101

1.84 × 102

2.65 × 103

1.02 × 10−1

1.32 × 10−3

Apline

PSO
PIO

CGAPIO
ALPIO

3.96 × 101

4.13 × 10−2

5.98 × 10−6

4.25 × 10−8

5.25 × 101

1.47 × 101

4.89 × 10−2

3.67 × 10−3



Remote Sens. 2022, 14, 4768 14 of 20

5.2. Simulation of Different Algorithms for Path Planning

In this paper, we do not consider the effect of any perturbation on the orbit in path
planning. Based on the conditions when using the C-W equation, only the relative states of
the spacecraft, the obstacle, and the reference spacecraft are considered, and any change
in position between the obstacles and the reference spacecraft is ignored in the LVLH
coordinate system. The reference spacecraft is set as the coordinate origin in LVLH; its
semi-major axis is 7178.14 km, with eccentricity 10−6, inclination 98◦, right ascension of
ascending node 194.224◦, argument of perigee 0◦, and true anomaly 0◦. To verify that the
proposed ALPIO-based approach avoids the obstacle environment, consumes the least
fuel, and improves the smoothness of the path when applying spacecraft cluster orbit
reconstruction path planning, the fuel consumption, fitness value of the algorithms, and
smoothness of the trajectory of each spacecraft were compared with the basic PSO, basic
PIO, and CGAPIO. The parameters of the simulation were set as shown in Tables 4–6.
The data in Tables 4 and 5 indicate the relative states with the reference satellite, while the
initialization parameters of the algorithms are shown in Table 1.

Table 4. Initial relative state parameters of the spacecraft and obstacles.

x/(km) y/(km) z/(km) ẋ/(km/s) ẏ/(km/s) ż/(km/s)

Spacecratf1 0 40 2 −0.002 0 −2.4× 10−4

Spacecraft2 −40 0 1.2 0.002 0.002 −2× 10−4

Spacecratf3 0 −40 2 −0.002 0 −1.6× 10−4

Spacecratf4 40 0 2.8 0 −0.002 −2× 10−4

Obstacle1 0 27 0 −0.002 0 −2.4× 10−4

Obstacle2 −26 0 0 0.002 0.002 −2× 10−4

Obstacle3 0 −28 0 −0.002 0 −1.6× 10−4

Obstacle4 25 0 0 0 −0.002 −2× 10−4

Table 5. Target relative state parameters of spacecraft.

x/(km) y/(km) z/(km) ẋ/(km/s) ẏ/(km/s) ż/(km/s)

Spacecratf1 14.14 −14.14 −1.71 0 0 0
Spacecraft2 14.14 14.14 −1.71 0 0 0
Spacecratf3 −14.14 14.14 −2.28 0 0 0
Spacecratf4 −14.14 −14.14 −2.28 0 0 0

Table 6. Parameters of path planning.

Parameter Expression Value

J Penalty factor 100
Pmax Threshold of collision probability 10−6

n Orbital angular velocity 10−3 rad/s
t Reconstruction time ≤40 min
Rsa f e Safe distance 30 m
ux, uy, uz Acceleration components 10−5 m/s2

The results of the simulation are shown in Figure 11. The blue orbit and red orbit are
the initial transfer orbit and target transfer orbit, respectively, of the spacecraft, and the
colored spheres represent obstacles in space.
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(a) (b)

(c) (d)

Figure 11. (a) PSO planning path, (b) PIO planning path, (c) CGAPIO planning path, (d) ALPIO
planning path.

5.3. Comparison of Fuel Consumption with Different Algorithms

As shown in Tables 7–9, the total consumption of fuel for orbital reconstruction in-
creases for each algorithm under the same conditions as the number of impulses. Compared
with the other algorithms, ALPIO maintains the least consumption of fuel for different im-
pulses. The problem becomes more complicated regarding the search for a better trajectory
solution due to the increase in the number of trajectory discretization points. Therefore, we
consider the use of four impulses to complete the trajectory reconstruction of the cluster.
The time required by different algorithms to complete path planning with different num-
bers of impulses is shown in Table 10. The results indicate that the real-time performance
of the ALPIO proposed in this paper represents a great improvement.

Table 7. Four-Impulse.

Algorithm
∆v/(km/s)

Spacecraft 1 Spacecraft 2 Spacecraft 3 Spacecraft 4 Total

PSO 0.143930 0.179476 0.151393 0.197614 0.672413
PIO 0.141176 0.175323 0.141251 0.177637 0.635388

CGAPIO 0.140877 0.173518 0.140907 0.175290 0.630592
ALPIO 0.140823 0.173353 0.140866 0.175288 0.630333



Remote Sens. 2022, 14, 4768 16 of 20

Table 8. Five-Impulse.

Algorithm
∆v/(km/s)

Spacecraft 1 Spacecraft 2 Spacecraft 3 Spacecraft 4 Total

PSO 0.154627 0.210988 0.162819 0.200227 0.728661
PIO 0.157961 0.193940 0.156199 0.192466 0.700566

CGAPIO 0.150595 0.182973 0.157982 0.198670 0.690220
ALPIO 0.146349 0.176344 0.144906 0.194798 0.662397

Table 9. Six-Impulse.

Algorithm
∆v/(km/s)

Spacecraft 1 Spacecraft 2 Spacecraft 3 Spacecraft 4 Total

PSO 0.193661 0.271571 0.179255 0.212045 0.856532
PIO 0.163336 0.197146 0.163789 0.200310 0.724581

CGAPIO 0.163417 0.192411 0.157560 0.202538 0.715926
ALPIO 0.156120 0.183607 0.149306 0.200546 0.689579

Table 10. Running time of different algorithms at different impulses.

Algorithm
Running Time/(s)

Four-Impulse Five-Impulse Six-Impulse

PSO 7.76 9.89 12.39
PIO 5.48 6.73 10.28

CGAPIO 5.29 6.55 9.96
ALPIO 5.12 6.34 9.52

5.4. Comparison of Fitness Value Changes of Different Algorithms

Figure 12 shows the fitness value curve of each algorithm with different impulses.
It can be clearly seen that the PSO falls into the local optimum in the early stage. Com-
pared with PIO, ALPIO jumps out of the local optimum in the later stage while maintain-
ing fast convergence. The convergence speed of ALPIO is faster than that of CGAPIO,
and the convergence accuracy is improved, as well which again proves that ALPIO has
better convergence.

0 20 40 60 80 100

0.63

0.64

0.65

0.66

0.67

0.68

F

NC

 ALPIO
 CGAPIO
 PIO
 PSO

(a)

0 20 40 60 80 100
0.65

0.70

0.75

0.80

0.85

F

NC

 ALPIO
 CGAPIO
 PIO
 PSO

(b)

0 20 40 60 80 100
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F

NC

 ALPIO
 CGAPIO
 PIO
 PSO

(c)

Figure 12. (a) Fitness value of different algorithms for completing path planning with four impulses;
(b) fitness value of different algorithms for completing path planning with five impulses; (c) fitness
value of different algorithms for completing path planning with six impulses.
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5.5. Comparison of the Smoothness of the Path Planning Trajectory with Different Algorithms

Selecting Spacecraft 2 and 4 in Figure 11 as the reference spacecraft, the starting
points and target points are transformed to the xr axis in the new coordinate system in
Section 4.6. The yr axis and zr axis are used as the reference directions. The components of
the reconstructed trajectory points planned by different algorithms on the yr axis and zr
axis are compared with the distance variation range from the reference direction, with a
smaller change indicating a smoother trajectory.

Figures 13–16 show the comparison of the trajectories of the four spacecraft using
different algorithms to complete the path planning, respectively. Each path is compared
with the reference axis. Note that the red line is smoother than the other three lines,
indicating that the smoothness of the trajectory in the path planned by ALPIO is improved;
this can reduce the jitter of the spacecraft during maneuvers, further ensuring its safety.
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Figure 13. (a) Projection of the trajectory of Spacecraft 1 on the yr axis; (b) projection of the trajectory
of Spacecraft 1 on the zr axis.
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Figure 14. (a) Projection of the trajectory of Spacecraft 2 on the yr axis; (b) projection of the trajectory
of Spacecraft 2 on the zr axis.
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Figure 15. (a) Projection of the trajectory of Spacecraft 3 on the yr axis; (b) projection of the trajectory
of Spacecraft 3 on the zr axis.
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Figure 16. (a) Projection of the trajectory of Spacecraft 4 on the yr axis; (b) Projection of the trajectory
of Spacecraft 4 on the zr axis.

5.6. Comparison of Obstacle Avoidance

In spacecraft cluster orbit reconstruction, the threat distances of all paths of the space-
craft cluster are considered. Figure 17 represents the sum of the threat distances at each
moment; in combination with Figure 11, it can be seen that each path does not enter the
dangerous areas. Thus, the threat distance consists of the distance between the paths
outside the region and the discrete points. It is obvious that a farther distance between the
discrete points and the center of the danger means a larger F2, i.e., the threat distance at the
maneuver point increases, According to Figure 17, the threat distance corresponding to PSO
is unstable; the value is larger than other algorithms, indicating that the safe path further
bypasses the dangerous area. The threat distance corresponding to ALPIO fluctuates less
than the other algorithms, and the value is smaller, indicating that the spacecraft is in the
safe area and the path does not bypass the dangerous area by very much, which can save
fuel while meeting the requirements of optimal path planning.
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Figure 17. Schematic of threat distance for different algorithms.

6. Conclusions

The proposed ALPIO-based approach can solve the inherent problems of PIO, that is,
is able to escape both local optima and late evolutionary stagnation. Different mutation
strategies are applied for the optimal search characteristics of pigeons at different stages,
while the number of pigeons is always kept at a reasonable size during the evolution of the
population, balancing the speed of convergence and the local search capability.

The convergence accuracy of ALPIO is better at reaching the optimal solution, and the
algorithm is able to solve the obstacle avoidance problem between spacecraft and space
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targets in the path planning of spacecraft cluster orbit reconstruction. Compared with the
path planned by PIO, the degree of smoothness is greatly improved, which can further
ensure the safety of the spacecraft in path planning.
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