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Abstract
A routing prediction strategy via a pigeon-inspired optimization (PIO)-based neural network (NN) is designed for UAV swarm
networks with highly dynamic topology. The proposed strategy can predict the performance of the neighboring nodes as the
next hop. For more precise prediction and less computational complexity, the states of the UAV swarmmotion and the network
are considered as the prior information, and the PIO-based NN framework is established. Based on the system model, PIO
is applied to find the optimal weight matrices of the NN-based routing prediction model. The matrix of the hop count index
function is calculated using this prediction model. The proposed strategy can directly determine the next hop based on the
prediction results or can be combined with other routing methods to maintain a balance between the stability and the shortest
path. Numerical simulations are conducted to demonstrate the effectiveness of the proposed strategy.

Keywords UAV swarm network · High-dynamic topology · Routing prediction strategy · Neural network · Pigeon-inspired
optimization

1 Introduction

UAV swarms play an important role in disaster relief, city
management, geological reconnaissance and other difficult
tasks for humans [1]. Such swarms can work in a complex
and dangerous environment with low cost and fewer casual-
ties [2]. The cooperative work of a UAV swarm depends on
communication, which requires determining an appropriate
routing path [3].

It is difficult for the traditional routing protocol to meet
the demands of UAV swarm networks because UAVs move
at a high speed and the relative motion among UAV swarms
is strenuous [4]. Therefore, the network topology is highly
dynamic and cannot be used as prior information when deter-
mining the routing path. To address these problems, many
studies have focused on routing methods based on machine
learning (ML) since they require less prior information and
aremore flexible [5, 6]. TheMLalgorithms applied to routing
methods include reinforcement learning (RL) [7–9], neural
networks (NNs) [5, 10–12], swarm intelligence algorithms
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[13], and combinations of different ML algorithms [13–17].
Although theML-based routingmethod is intelligent, it leads
to routing oscillations since theMLalgorithms are not robust.

Tofind the routing pathmore intelligently and stably, some
researchers have employed ML to evaluate the routing infor-
mation, such as the performance of the neighbor node and
the routing path [18–20]. In this case, ML algorithms did
not directly determine the next hop, but the predicted results
of the routing information were provided as the reference
for routing. These ML-based routing methods can estimate
the optimal routing path for moving nodes or predict the
performance of neighboring nodes through trial-and-error
structures, imitating path searching and optimal problem
solving [21, 22]. However, some ML algorithms that depend
on online learning are difficult to apply. These algorithms
occupy much of the computing resources of the UAVs [23,
24]. In addition, someML-based routing information predic-
tion methods ignore the features of UAV movement. Those
features can be the prior information for more precise predic-
tion and can be easily obtained by the navigation and control
systems of the UAV [25].

To apply the predicted routing information to the UAV
swarm network for routing path determination, a routing pre-
diction strategy based on the combination of PIO and NN
(PIONN) is proposed. The strategy includes offline training
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Fig. 1 Motion feature of UAV swarm

and routing prediction. In offline training, the states of the
UAV swarm and network are used as the prior information
for precise prediction. The PIO method is applied to find
the optimal weight matrices of the NN-based routing predic-
tion model, which can reduce the computational complexity
and can avoid a differential in the learning process. In rout-
ing prediction, the matrix of the hop count index function is
calculated according to the PIONN routing prediction (PIO-
NNRP) model.

The remainder of this paper is organized as follows: in
Sect. 2, the features of UAV movement are extracted as the
prior information for the routing prediction model, and the
PIONN framework is designed. In Sect. 3, the routing pre-
diction strategy based on PIONN is presented. In Sect. 4,
simulations are conducted to evaluate the performance of
PIONNRP. Section 5 presents the conclusions of this paper.

2 SystemModel

2.1 Feature Extraction of Movement

The UAV swarm includes NUAV nodes and A �{
a1, a2, · · · , aNUAV

}
denotes the set of the swarm, with

node ai (i ∈ [1, NUAV], i ∈ N
+). Let node aij ∈

Ai
NEI be the neighbor of node ai , in which Ai

NEI �{
aij

∣∣∣hop(ai , a j ) � 1
}
is the set of neighbors and hop(ai ,

a j ) ∈ N
+ is the function of the minimum hop count from

node ai to node a j .
Determining a proper next hop can optimize a routing

path. The next hop for less hop(ai , at ) may be the neighbor
of the originating node ai , flying toward the target node at .
Hence, the relative position and relative velocity among the
originating node, neighboring node and target node should
be considered.

As shown in Fig. 1, to evaluate the performance of node
aij as the next hop, the forward distance rfor(i , j , t) and
forward speed vfor(i , j , t) are defined as:

{
rfor(i , j , t) � ‖rfor(i , j , t)‖ � ‖r(i , j) cos[θr(i , j , t)]‖
vfor(i , j , t) � ‖vfor(i , j , t)‖ � ‖v(i , j) cos[θv(i , j , t)]‖ ,

(1)

where rfor(i , j , t) ∈ R
3 and vfor(i , j , t) are the forward

position and forward velocity among the originating node ai ,
neighboring node aij and target node at ∈ A, with t �� i , j ,

respectively. r(i , j) ∈ R
3 is the position between node ai

and node aij , and v(i , j) ∈ R
3 is the velocity of node aij .

θr(i , j , t) ∈ R is the angle between r(i , j) and r(i , t),
and θv(i , j , t) ∈ R is the angle between v(i , j) and r(i ,
t).

2.2 Routing Prediction Model Based on the PIONN
Framework

2.2.1 Routing Prediction Model

The hop count index function of the neighbor node aij is
defined to evaluate the performance of this neighbor as the
next hop to the target node at . In a network with a known
path, the hop count index function H (aij , at ) ∈ R is the

minimum hop count from node aij to node at . Otherwise, it
is obtained by prediction.

H (aij , at ) �
{
hop(aij , at ), known path

ĥ(aij , at ) , else
, (2)

where ĥ(a j , at ) ∈ R is the predicted hop count index func-
tion of the neighbor node aij .

ĥ(a j , at ) is predicted using PIONN, which is the fully
connected neural network with two hidden layers. The first
hidden layer includes 16 neurons, while the second hidden
layer includes 4 neurons.

The input u(i , j , t) ∈ R
4 and output ŷ(i , j , t) ∈ R are

designed as:

⎧
⎨

⎩

u(i , j , t) �
[
rfor(i , j , t) vfor(i , j , t) Tde(i , j) B(i , j)

]T

ŷ(i , j , t) � ĥ(aij , at )
,

(3)

where Tde(i , j) ∈ R and B(i , j) ∈ R are the delay and
maximum bandwidth from node ai to aij , respectively.

And the hop count index function is predicted by:

⎧
⎪⎨

⎪⎩

z1(i , j , t) � tanh[Wuhu(i , j , t)]

z2(i , j , t) � tanh[Whhz1(i , j , t)]

ŷ(i , j , t) � Whyz2(i , j , t)

, (4)
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where Wuh ∈ R
16×4, Whh ∈ R

4×16 and Why ∈ R
1×4 are

the weight matrices, and z1(i , j , t) ∈ R
16 and z2(i , j ,

t) ∈ R
4 are the outputs of the first and second hidden layers,

respectively.

2.2.2 PIONN Framework

To accurately predict the hop count index function, it is nec-
essary to obtain the optimal weight matrices of the NN-based
routing prediction model. To address this problem, the PIO-
based NN framework is proposed.

Definition1 In the learningprocess of thePIONN, letWuh ∈
R
16×4, Whh ∈ R

4×16, and Why ∈ R
1×4 be three different

pigeon groups:

⎧
⎪⎪⎨

⎪⎪⎩

Wuh � {Wuh(1), Wuh(2), . . . , Wuh(Nset)}
Whh � {Whh(1), Whh(2), . . . , Whh(Nset)}
Why �

{
Why(1), Why(2), . . . , Why(Nset)

}
, (5)

where Nset is the number of sample pairs in the database. This
means that each pigeon group includes Nset individuals.

Definition 2 Pigeon groups Wuh, Whh, and Why move in
the spaces Vuh ∈ R

16×4, Vhh ∈ R
4×16, and Vhy ∈ R

1×4,
respectively. At the kth iteration, the positions of the pigeon
groups are:

⎧
⎪⎪⎨

⎪⎪⎩

Wuh(k) � {Wuh(1, k), Wuh(2, k), . . . , Wuh(Nset, k)}
Whh(k) � {Whh(1, k), Whh(2, k), . . . , Whh(Nset, k)}
Why(k) �

{
Why(1, k), Why(2, k), . . . , Why(Nset, k)

}
.

(6)

Three pigeon groups perform a cooperative flight to
decrease the error function of the output layer ey(p, k) ∈ R:

ey(p, k) � ỹ(k) − ŷ(p, k), (7)

with the theoretical output of the output layer ỹ(k) � h̃(k).
To satisfy limk→kmax ey(p, k) � 0 with the order of the

last iteration kmax, the center positionsWc
uh(k),W

c
hh(k), and

Wc
hy(k) are defined as the guidance. All individuals in the

pigeon groups fly toward its center, as shown in Fig. 2 with
Nset � 6 as an example.

The central positions Wc
uh(k), W

c
hh(k), and Wc

hy(k) are

calculated based on the quality of the pth pigeon individual
fitnessN1(p, k), fitnessN2(p, k), and fitnessy(p, k):

Wc
hy(k) �

∑Nset
p�0 Why(p, k)fitnessy(p, k)

Nset
∑Nset

p�0 fitnessy(p, k)
, (8a)

Fig. 2 The movement of pigeon group Wuh

Wc
hh(k) �

∑Nset
p�0 Whh(p, k)fitnessN2(p, k)

Nset
∑Nset

p�0 fitnessN2(p, k)
, (8b)

Wc
uh(k) �

∑Nset
p�0 Wuh(p, k)fitnessN1(p, k)

Nset
∑Nset

p�0 fitnessN1(p, k)
, (8c)

in which:

⎧
⎪⎨

⎪⎩

fitnessy(p, k) � ∥∥ey(p, k)
∥∥

fitnessN2(p, k) � ‖eN2(p, k)‖
fitnessN1(p, k) � ‖eN1(p, k)‖

, (9)

where eN1(p, k) ∈ R
16×1 and eN2(p, k) ∈ R

4×1 are the
virtual error function of the first and second hidden layers,
respectively:

{
eN2(p, k) � z̃2(p, k) − z2(p, k)

eN1(p, k) � z̃1(p, k) − z1(p, k)
. (10)

Definition 3 In the kth iteration, the virtual target output of
the first hidden layer z̃1(p, k) ∈ R

16×1 and the virtual target
output of the second hidden layer z̃2(p, k) ∈ R

4×1 of the pth
sample pair are defined as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z̃2(p, k) � arg
z#2∈R4×1

[
Why(p, k)z#2 :� ỹ(p)

]

z̃1(p, k) � arg
z#1∈R16×1

{
tanh

[
Whh(p, k)z#1

]
:� z̃2(p, k)

} .

(11)

Based on this definition, the virtual error functions eN1(p,
k) and eN2(p, k) are derivate by:
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Fig. 3 The structure of the
routing prediction based on
PIONN

eN2(p, k) � z̃2(p, k) − z2(p, k)

� W+
hy(p, k)

(
Why(p, k)z̃2(p, k) − Why(p, k)z2(p, k)

)

� W+
hy(p, k)(ỹ(p, k) − y(p, k))

� W+
hy(p, k)ey(p, k),

(12)

eN1(p, k) � z̃1(p, k) − z1(p, k)

� W+
hh(p, k)(Whh(p, k)z̃1(p, k) − Whh(p, k)z1(p, k))

� W+
hh(p, k)(z̃2(p, k) − z2(p, k))

� W+
hh(p, k)eN2(p, k),

(13)

where, W+
hy(p, k) and W+

hh are the pseudoinverse matrices
of Why(p, k) and Whh(p, k), respectively.

Why(p, k) and Whh(p, k) are not square matrices, the
pseudoinverse solutions are used and Eqs. (12)–(13) are
rewritten as:

eN2(p, k) � WT
hy(p, k)

(
Why(p, k)WT

hy(p, k)
)−1

ey(p, k),

(14)
eN1(p, k) � WT

hh(p, k)
(
Whh(p, k)WT

hh(p, k)
)−1

eN2(p, k).
(15)

3 Routing Prediction Strategy Based
on PIONN

The routing prediction strategy is designed to predict the hop
count index function H (aij , at ), which evaluates the perfor-

mance of the neighbor node aij as the next hop to the target
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node at . The prediction results are used as a reference when
choosing the route. The proposed strategy provides only the
predicted hop count index function, and it can directly select
the next hop or can be combined with most routing methods.
In this case, the routing choice can be more intelligent but
still stable.

The structure of the proposed routing prediction strategy
is shown in Fig. 3. Before themission, to find the routing pre-
diction model, offline training based on PIONN is conducted
with the database, which is created by the historical state of
the network and the UAV swarm and its corresponding hop
count index function. Since the routing path is known in the
previous missions, the hop count index function is the hop
count from the neighbor node to the target node.

During the mission, the hop count index function of each
neighbor node is predicted based on the routing prediction
model and the state of the network and UAV swarm in real
time. The real-time network state includes the real-time delay
Tde(i , j) and maximum bandwidth B(i , j) from the origi-
nating node ai to its neighbor node aij , while the real-time
state of the UAV swarm includes the real-time forward dis-
tance rfor(i , j , t) and forward speed vfor(i , j , t) from the
originating node ai to the target node at with node aij as the
next hop.

3.1 Offline Training

The offline training procedures based on PIONN are shown
in Fig. 4:

Step 1: Importing database
The input and output of the PIONN are obtained based on

the database:
⎧
⎨

⎩
u(p) �

[
rfor(p) vfor(p) Tde(p) B(p)

]T

ỹ(p) � H (p)
, (16)

where p ≤ Nset (P ∈ N
+) is the order of the sample pair.

Step 2: Initialization of the learning process
The initial order of the learning process is set as k � 1, and

all initial weight matricesWuh(p, 0),Whh(p, 0) andWhy(p,
0) are chosen.

Step 3: Calculation of the output and error functions of
each layer

The output of the first and second hidden layers and the
output of the output layer are obtained by:

⎧
⎪⎨

⎪⎩

z1(p, k) � tanh[Wuh(p, k)u(p, k)]

z2(p, k) � tanh[Whh(p, k)z1(p, k)]

ŷ(p, k) � Why(p, k)z2(p, k)

. (17)

The error function of the output layer ey(p, k) is obtained
based on Eq. (7), while the virtual error functions of the first

Fig. 4 Offline training

and second hidden layers are obtained based on Eqs. (14),
(15).

Step 4: Training the pigeon groups
The quality of the pth pigeon individual fitnessN1(p, k),

fitnessN2(p, k), and fitnessy(p, k) are calculated based on
Eq. (9). The central positions Wc

uh(k), W
c
hh(k), and Wc

hy(k)
are obtained based on Eq. (8). Then, each pigeon individual
flies toward its central position:

⎧
⎪⎪⎨

⎪⎪⎩

Why(p, k + 1) � Why(p, k) + ηhy

[
Wc

hy(k) − Why(p, k)
]

Whh(p, k + 1) � Whh(p, k) + ηhh
[
Wc

hh(k) − Whh(p, k)
]

Wuh(p, k + 1) � Wuh(p, k) + ηuh
[
Wc

uh(k) − Wuh(p, k)
]
,

(18)

where ηhy, ηhh, and ηuh are the learning steps.
Step 5: Determination
If limk→kmax ey(p, k) ≤ ε or k � kmax is satisfied with a

small positive value ε, the learning process ends. The optimal
weight matrices are:

⎧
⎪⎪⎨

⎪⎪⎩

Wopt
hy � Wc

hy(k)

Wopt
hh � Wc

hh(k)

Wopt
uh � Wc

uh(k)

, (19)

or let k � k + 1 and go to Step 3.
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Table 1 Routing strategies in
simulations Routing strategy Topology Description

PIONNRP Unknown Evaluating the performance of PIONNRP without combining with
other routing method

PIONNRP +
GPSR

Unknown Evaluating the performance of PIONNRP combining with other
routing methods

GPSR Unknown For comparison with traditional routing protocol

BPNNRP Unknown For comparison with ML-based routing prediction strategy

3.2 Routing Prediction

The hop count index function of j th the neighbor node is
predicted by:

H (aij , at ) � ĥ(aij , at ) � Wopt
hy

{
tanh

[
Wopt

hh

(
tanh

[
Wopt

uh u(i , j , t)
])]}

,

(20)

and the matrix of hop count index function is:

�(ai ) �

⎡

⎢⎢⎢⎢⎢
⎣

H (ai1, a1) H (ai2, a1) · · · H (aiNNEI
, a1)

H (ai1, a2) H (ai2, a2) · · · H (aiNNEI
, a2)

...
...

. . .
...

H (ai1, aNTAR) H (ai2, aNTAR) · · · H (aiNNEI
, aNTAR)

⎤

⎥⎥⎥⎥⎥
⎦
,

(21)

where NNEI and NTAR are the number of the neighbor nodes
and target nodes.

4 Performance Evaluation

To evaluate the performance of the proposed routing pre-
diction strategy, four routing strategies are implemented in
simulation scenarios, including greedy perimeter stateless
routing (GPSR) [26], back-propagation NN-based routing
prediction (BPNNRP) strategy [27], PIONNRP, and the com-
bination of PIONNRP and GPSR (PIONNRP + GPSR), as
shown in Table 1:

If PIONNRP is implemented without other routing meth-
ods, the next hop is selected by the following equation:

anext � arg
a j
i

min
{
Wopt

hy

{
tanh

[
Wopt

hh

(
tanh

[
Wopt

uh u(i , j , t)
])]}}

.

(22)

Since PIONNRP is the routing prediction strategy, it
can be combined with other routing methods to maintain a
balance between stability and less hop count. Therefore, PIO-
NNRP + GPSR is used to determine the next hop. PIONN +
GPSR is conducted by a simple strategy:

anext

�

⎧
⎪⎨

⎪⎩

arg
a j
i

min
{
Wopt

hy

{
tanh

[
Wopt

hh

(
tanh

[
Wopt

uh u(i , j , t)
])]}}

, rand < ζ

GSRP(i , j , t), else

.

(23)

The aforementioned equation means that if rand < ζ , the
next hop is selected by PIONNRP, or it is selected based
on GPSR, where rand ∈ [0, 1] is a random function and
ζ ∈ (0, 1) is a constant.

The parameters of the UAV swarm in the simulation are
shown in Table 2, and its position and velocity are shown in
Fig. 5. It was flying toward the destination and avoided the
forbidden zone. The forbidden zone is shown as a sphere in
Fig. 5a.

There are three cases in the simulation, and the half-power
beam width (HPBW) among them is different. HPBW is
the angular separation in which the magnitude of the radi-
ation pattern decreases by − 3 dB from the peak of the
main beam. Therefore, there are more neighbors with larger
HPBWwithin limits. The HPBW of case 1 is larger than that
of case 2. Similarly, the HPBW of case 2 is larger than that
of case 3. Hence, the average number of neighbors of these
cases are different. In each case, the number of sample pairs
in the database is Nset � 73500, and the number of test sim-
ulations is 1,225,000. Each case includes four scenarios, and
in each scenario, PIONNRP, PIONNRP +GPSR, GPSR, and
BPNNRP are implemented. Their parameters are shown in
Table 3.

Table 2 Parameters of UAV
swarms Number of nodes Region Speed Transmission distance Simulation duration

50 x : 0 − 10 km

y : 0 − 8 km

z : 8 − 8.05 km

0–22 m/s 2 km 500 s
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Fig. 5 Movement of UAV swarm

The training times of BPNNRP and PIONNRP were
7311.79 s and 2189.06 s, respectively. Obviously, the training
time of PIONNRP was much less than the time of BPN-
NRP, and the computational complexity of PIONNRP was
reduced. For detailed comparison, different time-to-live in
networking (TTL) is used in simulations for detailed com-
parison. TTL is the time limit imposed on the data packet
to avoid the problem of circulating forever in the network.
It can be regarded as the maximum hop in which the data
packet is valid in the network.

The performance evaluations of Case 1 are shown in
Fig. 6. In this case, since the average number of neighbors

was considerable, as shown in Fig. 6a, it was not difficult
to find an appropriate routing path. Therefore, the delivery
failure ratios of all routing strategies were less than 10%
with TTL � {10, 15, 20, 25}. PIONNRP and PIONNRP
+ GPSR performed much better than GPSR and PIONNRP.
Compared with those of the traditional routing protocol, the
average hop counts of PIONNRP were about approximately
20.5%, 39.7%, 44.6%, 46.9%, and 47.8% less than those of
GPSRwith varying TTLs becauseGPSR considered only the
distance among nodes and ignored the historical experience.
Comparedwith theML-based routing strategy, although both
PIONNRP and BPNNRP could find a short path, the delivery

Table 3 Parameters of scenarios

Case Transmission condition Scenario Routing strategy Parameters

1 HPBW: 15° 1 PIONNRP ηhh � ηuh � 0.1 × rand ηhy � 3 × rand

2 PIONNRP + GPSR ηhh � ηuh � 0.1 × randηhy � 3 × rand

ζ � 0.9

3 GPSR –

4 BPNNRP Activation function: tanh(·)
Number of hidden layers: 2

2 HPBW: 10° 5 PIONNRP ηhh � ηuh � 0.1 × rand ηhy � 3 × rand

6 PIONNRP + GPSR ηhh � ηuh � 0.1 × randηhy � 3 × rand

ζ � 0.9

7 GPSR –

8 BPNNRP Activation function: tanh(·)
Number of hidden layers: 2

3 HPBW: 5° 9 PIONNRP ηhh � ηuh � 0.1 × randηhy � 3 × rand

10 PIONNRP + GPSR ηhh � ηuh � 0.1 × randηhy � 3 × rand

ζ � 0.9

11 GPSR –

12 BPNNRP Activation function: tanh(·)
Number of hidden layers: 2
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Fig. 6 Performance evaluation with varying TTL of case 1

failure ratios of PIONNRP are 43.8%, 70.0%, 77.5%, 84.1%,
and 91.1% less than those of BPNNRP with varying TTL,
respectively. In particular, PIONNRP + GPSR performed
slightly better than PIONNRP because PIONNRP + GPSR
wasmore stable than PIONNRPwith a lower delivery failure
ratio.

The simulation results of case 2 are shown in Fig. 7. The
average number of neighbors is less than that of Case 1 due
to the smaller HPBW. Similarly, PIONNRP and PIONNRP
+ GPSR performed better than GPSR and BPNNRP because
the delivery failure ratios, average hop counts, and variance
of hop count of GPSR and BPNNRP are larger than those of
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Fig. 7 Performance evaluation with varying TTL of case 2

PIONNRP and PIONNRP + GPSR. Contrasting PIONNRP
and PIONNRP + GPSR, PIONNRP paid more attention to
shorter routing paths, while PIONNRP + GPSR focused on
keeping a balance between stability and short paths. In this
case, the average hop counts of PIONNRPwere 9.3%, 20.1%,
18.6%, 15.0%, and 12.9% less than those of PIONNRP +
GPSRwith varyingTTL,while its delivery failure ratioswere

56.8%, 79.3%, and 99.2% larger than those of PIONNRP +
GPSR with TTL � {5, 10, 15}, respectively. With TTL �
{20, 25}, the delivery failure ratios of PIONNRP + GPSR
were 0%.

The simulation results of case 3 are shown in Fig. 8. The
average number of neighbors decreases due to the smaller
HPBW.Comparedwith that of cases 1–2, the average number
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Table 4 Comparisons among
routing strategies Average number of neighbors 11.39 20.83 28.36

Average hop count (TTL � 15) PIONNRP + GPSR 4.6531 4.5966 2.2236

PIONNRP 5.3300 3.7417 3.0516

BPNNRP 6.0023 4.3107 3.4154

GPSR 8.1341 6.9155 5.5064

Variance of hop count (TTL � 15) PIONNRP + GPSR 6.1643 5.9801 0.2653

PIONNRP 11.2581 5.6303 3.3306

BPNNRP 14.48 8.9830 5.3796

GPSR 11.5637 10.9365 8.2501

Delivery failure ratio (%) (TTL � 15) PIONNRP + GPSR 0.20 0.01 0

PIONNRP 7.06 1.31 0.69

BPNNRP 28.44 7.12 3.07

GPSR 19.10 8.98 4.33

Average end-to-end delay (TTL � 15) PIONNRP + GPSR 4.7345 4.5654 2.6869

PIONNRP 7.8674 5.2154 4.2002

BPNNRP 6.8764 4.5240 3.8587

GPSR 7.3345 6.2241 5.2279

Variance of end-to-end delay (TTL �
15)

PIONNRP + GPSR 19.9536 16.9468 5.8579

PIONNRP 46.8941 22.1721 14.3798

BPNNRP 44.2076 19.1368 13.9206

GPSR 43.6949 31.4851 22.2268

of neighbors in this case decreases and the average delivery
failure ratio increases. Similarly, PIONNRPandPIONNRP+
GPSR performed better than GPSR and BPNNRP. As shown
in Fig. 8c, the delivery failure ratios of GPSR and BPN-
NRPwere unbearable.ComparingPIONNRPandPIONNRP
+ GPSR, PIONNRP + GPSR still maintained a balance
between delivery success ratio and hop count, although the
neighbors were not dense.

The comparisons among the four routing strategies are
shown in Table 4, and the conclusions are given as follows:

(a) The traditional routing protocol, GPSR, failed to find an
appropriate routing path for UAV swarm network.

(b) Although BPNNRP could find a shorter path with lower
end-to-end delay, compared with GPSR, its delivery
failure ratio was still unacceptable.

(c) Compared with GPSR and BPNNRP, PIONNRP could
find a shorter path and decrease the delivery failure ratio
for the UAV swarm network.

(d) PIONNRP + GPSR performed better than PIONNRP
since it could find an appropriate routing path with low
end-to-end delay and delivery failure ratio.

Since the combination of PIONNRP andGPSR is better in
most cases, it is important to optimally choose ζ . A larger ζ is
suggested in the case with higher-dynamic topology because
PIONNRP can solve problems with uncertainties.

5 Conclusions

In this paper, a routing prediction strategy is designed based
on the combination of PIO and NN for UAV swarm net-
works. The proposed strategy predicts the performance of
neighbors for routing paths through a PIO-based NN frame-
work without the topology as prior information. Therefore,
it can be applied to networks with highly dynamic topol-
ogy. PIONNRP can be implemented to select the next hop
according to the prediction results or be combined with other
routing methods. Simulation results have demonstrated the
efficiency of the proposed strategy. This routing prediction
strategy provides a method to apply ML to routing with a
balance between intelligence and stability.
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Fig. 8 Performance evaluation with varying TTL of case 3
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