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Multi-objective data clustering is an important issue in data mining, and the realization of data clustering using the multi-
objective optimization technique is a significant topic. A combinatorial multi-objective pigeon inspired optimization (CMOPIO)
with ring topology is proposed to solve the clustering problem in this paper. In the CMOPIO, a delta-locus based coding approach
is employed to encode the pigeons. Thus, the length of pigeon representation and the dimension of the search space are
significantly reduced. Thereby, the computational load can be effectively depressed. In this way, the pigeon inspired optimization
(PIO) algorithm can be discretized with an auxiliary vector to address data clustering. Moreover, an index-based ring topology
with the ability of contributing to maintain flock diversity is adopted to improve the CMOPIO performance. Comparative
simulation results demonstrate the feasibility and effectiveness of our proposed CMOPIO for solving data clustering problems.
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1 Introduction

Data clustering is one of the most significant technologies to
discovery new knowledge hidden in a massive amount of
data generated by current applications. Clustering analysis is
the process of finding homogeneous groups of data and se-
parating heterogeneous objects without any training samples
and priori knowledge. As an active subject, it provides ex-
cellent perspectives in many applications, such as marketing
[1], patient stratification [2], image processing [3], network
clustering [4], cluster-based routing protocol for highly
mobile unmanned aerial vehicles (UAVs) network [5,6], and
received signal strength indicator-based clustering for UAV

integrated wireless sensor networks [7], etc.
In recent years, considerable clustering approaches have

been developed for data analysis in different fields. These
available methods are usually classified into partition-based
clustering [8], hierarchical-based clustering [9], density-
based clustering, and model-based clustering. These clus-
tering algorithms play an important role in fostering the
development of data clustering technique. A recent survey
about the data clustering can be found in ref. [10].
Essentially, data clustering can be modeled as an optimi-

zation problem, so that some optimization algorithms, such
as genetic algorithm (GA), differential evolution, particle
swarm optimization [11], and ant colony optimization [12],
can be employed to solve it. For example, discrete particle
swarm optimization has been successfully employed for a
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single objective clustering in ref. [8]. In some applications, it
should be beneficial to consider several conflicting validity
indices simultaneously to capture different characteristics of
the datasets. In recent years, many multi-objective evolu-
tionary algorithms have been proposed for solving the
clustering problem, such as the multi-objective clustering
(MOC) with automatic k-determination [13], multi-objective
evolutionary clustering ensemble algorithm [14], MOC al-
gorithms [15], and multi-objective k-means GA [16]. As
mentioned above, most of the MOC algorithms are based on
the multi-objective GAs [17]. Besides, some other optimi-
zation approaches including but not limited to the algorithms
mentioned above have also been successfully employed for
solving the MOC problem [18,19].
However, with the development of technology, the di-

mension and scale of the data dramatically increase. This
may bring great challenges to the MOC optimization algo-
rithms, when it comes to analyse the large-scale data, these
algorithms may suffer from the curse of dimensionality.
Hence it is necessary to develop effective multi-objective
optimization methods to address the MOC optimization
problem.
Pigeon inspired optimization (PIO) is a novel swarm in-

telligence technique originating from the studies of pigeon
homing behaviour [20]. The search process of PIO is divided
into two stages: the first stage employs the map and compass
operator to search, while the landmark operator is used in the
second stage. The segmented search strategy can effectively
balance the explorative ability and the exploitative ability. As
a population-based algorithm, PIO is able to explore multiple
optima in a single iteration. Besides, compared with the most
classical optimization methods, PIO has a significant ad-
vantage that it makes very few requirements about the solved
problem. Hence, after the presentation of PIO, it has gained
increasing attention as an efficient, simple and robust tech-
nique for solving optimization problems. Many variants of
PIO have been derived and broadly applied to various fields
[21], such as echo state networks for image restoration [22],
explicit nonlinear model predictive control for quadrotor
[23], enhanced active disturbance rejection control for the
attitude deformation system of a self-developed mobile robot
[24], path planning of the UAV [25], parameter design of the
brushless direct current motor [26], UAV flocking control
with obstacle avoidance [27], longitudinal parameters tuning
of the UAV’s automatic landing system [28], and energy
management for parallel hybrid electric vehicle [29].
PIO has achieved great success in solving continuous op-

timization problems. However, as far as we known, there are
few studies on solving discrete optimization problems with
PIO. A binary PIO algorithm was proposed for solving
multi-dimensional knapsack problem (MKP) in ref. [30]. A
discrete PIO algorithm with the Metropolis acceptance cri-
terion was proposed for large-scale traveling salesman pro-

blems [31]. These applications prove that the PIO is one of
the effective methods for addressing the combinatorial op-
timization problems.
Motivated by the aforementioned introduction, this paper

regards the data clustering as an optimization problem, then
proposes a combinatorial multi-objective PIO (CMOPIO)
approach with ring topology to solve it. The contributions of
the paper are concluded as follows.
(1) When we extend the optimization algorithm for the

MOC optimization problem, the representation of the clus-
tering solution is the first issue to be solved. Because the
popular locus-based adjacency representation methods still
suffer the limitation that the encoding length increases lin-
early with the size of the data, the reduced-length pigeon
representation is realized using the delta-locus encoding
method [32]. This operation significantly depresses the
search space’s dimension and makes the proposed CMOPIO
be an available technique to address MOC optimization
problem.
(2) To address the MOC optimization problem, the

CMOPIO algorithm is proposed. In the CMOPIO, a dis-
cretization technique is used to transform the classical PIO
into the combinatorial PIO to foster its application to clus-
tering analysis. Based on the combinatorial PIO, the CMO-
PIO approach with ring topology is developed, where the
index-based ring topology is employed to enhance the ability
of identifying the Pareto-optimal pigeon and promote flock
diversity. The proposed CMOPIO can determine the appro-
priate number of clusters as well as achieve well-separated,
connected and compact clusters.
The rest of the paper is organized as follows. Section 2

gives descriptions of the MOC problem. Section 3 overviews
the general PIO, describes the pigeon representation ap-
proach and shows the clustering criteria for evaluating the
clustering solution. Most importantly, the implementation of
the CMOPIO and its application on the MOC optimization
problem are provided in this section. In Section 4, simula-
tions are carried out to demonstrate the effectiveness of the
proposed approach. Finally, our concluding remarks are
contained in Section 5.

2 Preliminaries and problem statement

2.1 Multi-objective clustering

Given a dataset D with Ndata data in Ddim-dimensional space,
the partition clustering problem can be modeled as

c i N
c c i j

c c ND

, = 1, 2, … , ,
= , ,

=   or  = ,
(1)
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i j

i
k

i i
k
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where C=[c1, c2,…,cN] denotes the clustering result, N is the
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number of clusters, represents the union of two partitions,
indicates the intersection of two partitions, is the null set,

ci calculates the number of entries in ci.
In the perspective of optimization, data clustering refers to

group homogeneous data and separate heterogeneous data to
optimize some criteria. As stated above, a single validity
measure may be unable to trade off the whole desired per-
formance of clustering task. Then it contributes to the MOC
by considering various conflict objectives. The MOC opti-
mization can be stated as the problem of finding a set of
clustering solutions C such that

f f ff C C C Cmin ( ) = [ ( ),   ( ),  … ,   ( )], (2)m1 2

where Rf C( ) m is the objective function vector with fi(C),
i m{1, 2, … , } representing the ith clustering criterion.m is
the number of objective functions. All clustering solutions
satisfying corresponding constraint eq. (1) make up the so-
lution space.
For the MOC optimization problem, with the ex-

emplification of Figure 1, the following concepts are de-
fined.
(1) Dominance [33]: the clustering solution C1 is said to

dominate the solution C2 if and only if

{ }i m f f
i f f

C C
C C

1, 2, … ,     ( ) ( ),   
and  :   ( ) < ( ).

(3)i i

i i

1 2
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(2) Pareto optimal solution: the clustering solution Ci is
regarded as a Pareto optimal solution if there are not any
solutions dominate it. The Pareto solution set consists of
these Pareto solutions.
(3) Pareto front (PF): the maps of the non-dominated

clustering solution set to the objective space constitute the
Pareto front, which describes the trade-off among a variety of
conflict validity measure functions.

2.2 Clustering criteria

The main issue of employing multi-objective optimization
algorithm to address the MOC problem is the selection of
appropriate fitness functions. In general, connectivity and

compactness are the common validity measure indexes to
evaluate a clustering solution [19]. In this paper, both of them
are introduced as the fitness functions. Firstly, to express the
concept of clustering compactness, the intracluster variance
is calculated using the following equation:

f N V c

V c d i µ c
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with ( ) = ( , ( )) ,
(4)c
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where μ(cj) is the center of cluster cj, d(i, μ(cj)) refers to the
Euclidean distance between the cluster’s center and the node
i inside in cluster cj. Afterwards, the following equation is
given to describe the clustering connectivity [32]:
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where L is the pre-designated parameter representing the size
of considered neighborhood, nnij indicates the jth nearest
neighbor of the node i.
Based on the above descriptions, the CMOPIO algorithm

will be developed in next section to quickly locate the
clustering solutions that perform excellent ability to trade off
the two different clustering criteria.

3 Multi-objective clustering using CMOPIO

3.1 Basic PIO with transition factor

The basic PIO is an effective population-based optimization
algorithm by stimulating the behavior of pigeon homing. It
was originally proposed by Duan and Qiao [20]. In PIO, a
flock of Np pigeons is considered, each pigeon is represented
by a position vector pi=[pi,1, pi,2, …, pi,dim] and a velocity
vector vi=[vi,1, vi,2, …, vi,dim]. The search procedure of the
solution relies on two independent cycles, map and compass
operator and landmark operator. The two significant opera-

Figure 1 (Color online) Mapping of a 3D solution space to the 2D objective space.
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tors of the basic PIO are merged using a transition factor α in
ref. [34]. The mathematical expression of this process can be
given as

t t
r t t t
r t t t

t t t
N t N t N

t
N t

v v
p p

p p
p p v

p
p

( + 1) = e ( )
              + (1 log ( + 1))( ( ) ( ))

              + log ( + 1)( ( ) ( )),
( + 1) = ( ) + ( + 1),
( + 1) = ( ) ,

=
( + 1)

( + 1) ,

(6)

i
R t

i

T i

T i

i i i

j

N t
j

( +1)

1 gbest

2 center

p p d

center
=1

( )

p

max

max

p

where R is the map and compass factor to control the impact
of the previous velocity on the current one, t is the iteration
number, r1 and r2 refer to the random numbers that subject to
the normal distribution, pgbest=[pgbest,1, pgbest,2, …, pgbest,dim] is
the global historical best position of the flock. The memory
pgbest and the center position pcenter=[pcenter,1, pcenter,2, …,
pcenter,dim] of the pigeon flock play a significant role in guiding
the movement of the pigeon flock in the solution space. Nd is
the number of the pigeons rejected in each iteration, Tmax is
the maximum number of iterations, tlog ( )Tmax

is the loga-
rithmic function. As t increased, pi(t) relies more on pcenter
rather than pgbest. Under the action of α, the transition be-
tween the two operators is completed smoothly.

3.2 Pigeon representation

There are several significant issues to be solved when extend
the PIO for data clustering. The first issue is the re-
presentation of the clustering solution, which is described by
the position of the pigeon. In recent, a locus-based adjacency
representation is firstly proposed in ref. [35], its less re-
dundant compared with the other representation approaches
makes it a prevalent method for encoding. However, as de-
scribed in ref. [36], the encoding method still suffers the
limitation that the encoding length increases linearly with the
size of the data. This may result in heavy computational
burden. To address the problem, a reduced-length encoding
algorithm referring as the delta-locus encoding is proposed
in ref. [32] based on the obtained minimum spanning trees
(MSTs) information. Motivated by this method, the pigeon
representation is carried out by following the next steps.
(1) Generation of the MST
TheMST is the spanning tree of a graph with the sum of all

the edges’ weights being the smallest. It is an effective tool
for building cable networks and studying the evolutionary
relations of gene sequences [37]. In this paper, the MST is
applied to describe the cluster membership of the data by
classifying the interconnected nodes into the same cluster.
The distances between each node are used to represent the
dissimilarity of the nodes. Let

d

x x x x

x x=

= ( ) + + ( )

ij i j

i j i D j D,1 ,1
2

, ,
2

dim dim

be the Euclidean distance between the node i and j. The
smaller the distance dij is, the higher the similarity between
these two nodes is. Calculating the distances between every
node of the dataset, then sort these distances in ascending
order to obtain the following adjacency matrix:

n n n
n n n

n n n

N = , (7)

N

N

N N N N

nearest

11 12 1

21 22 2

1 2

data

data

data data data data

where the tuple n n n[       ]j j jN1 2 data
, j=1, 2, …, Ndata, re-

presents the index vector of each node that differs from the
node j in ascending order. According to the adjacency matrix
Nnearest, the MST of the dataset with seven nodes can be
established as shown in Figure 2(a) using the Prim’s algo-
rithm.
As shown in Figure 2(a), all the connected nodes will be

clarified into the same cluster to obtain the cluster mem-
bership of the data. Then we can get the full-length re-
presentation of the clustering result as r=[i, j, …, k], ||r||
=Ndata. The index of the clustering result r indicates the
number of every link’s start node, and the elements of r
represent the number of the end node for each link. For
instance, the link 2→6 can be encoded as r(2)=6.
(2) Reduced-length representation of the pigeon
Before moving on to the next step, we give the concept of

similarity weight of the link i→j firstly [32]

sw i j nn j nn i d i j( ) = min( ( ), ( )) + ( , ), (8)i j
*

where nni(j) indicates the ranking of the node j in the nearest
neighbors of the node i. Then a=nni(j) stands for the node j is
the ath nearest neighbor of the node i. d*(i,j) is the normal-
ized dissimilarity between the nodes i and j.
According to the similarity weight of the MST edges, the

ranking of the MST edges is carried out as exemplified in
Figure 2(b). Meanwhile, a parameter λ is introduced to
classify the MST links into the relevant links set Er and fixed
links set Ef. The first λ×(Ndata−1), 0≤λ≤1 edges with higher
similarity weight will be divided into Er, while the rest
(1−λ)×(Ndata−1) edges will be classified into Ef. In sub-
sequent processing, only the relevant links are considered,
while the fixed links are considered to be invariable, which
provides general information Cgeneral for all the pigeons.
Therefore, as shown in Figure 2(c), the deterministic re-
presentation of clustering solution can be obtained by re-
moving all the relevant links. The start nodes and the end
nodes of the relevant links are stored in the set Sr and Tr,
respectively. Then, a pigeon with reduced-length from Ndata

to λ×(Ndata−1) would be constructed by redesignating the end
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nodes to the start nodes Sr of the relevant links (Figure 2(d)).
The length of the pigeon can be changed by adjusting the
parameter to satisfy different needs.
The redesignating rule can be concludes as j Sr, let

L<Ndata be the size of considered neighborhood, randomly
select a node from its neighborhood Nnearest(j,:), the selected
node l will be treated as the end note corresponding to the
node j if the generated link j→l satisfies j l E( ) r, i.e. the
removed relevant link j→i will be replaced with a novel link
j→l, herein l is the nearest neighbor of the node j except the
node i. The detailed implement of the generation of the re-
duced-length pigeon is given as Algorithm 1.

3.3 Pigeon evaluation

(1) Pre-evaluation of the fixed links set
It should be noted that the definition of the fixed links set

allows the pre-evaluation of the common part Cgeneral avail-
able for all clustering solutions (pigeon). Only the reduced-
length pigeon needs to be evaluated during each iteration.
This mechanism provides a well access to lower the com-
putation load. Meanwhile, the reduction of search space’s
dimension not only depresses the difficulty of exploration,
but also guarantees the searching ability and searching speed.
As given is Figure 2(c), the general cluster membership of

the data can be obtained by classifying the fixed inter-
connected nodes into the same cluster. Then the connectivity
and compactness (clustering fitness functions) of the de-
terministic part Cgeneral can be obtained as f1(Cgeneral) and
f2(Cgeneral) using eqs. (4) and (5).
(2) Evaluation of the pigeon
As shown in Figure 3, combining the deterministic re-

presentation and the reduced-length pigeon, a pigeon with
full-length encoding can be reconstructed as Figure 3(c).
Then a clustering result will be obtained by decoding the
full-length pigeon. Since the deterministic representation is
available for all the generated pigeons, after completing the
pre-evaluation of the common part of the clustering solution,
only the evaluation of the generated reduced-length pigeon
has to be carried out by dealing with the missing information.
The position of the pigeon stores the new end nodes that

has been reassigned for the relevant links’ start nodes. The
generation of the ith pigeon means the merging of some
different clusters that are obtained in the pre-evaluation
(Figure 3(b) and (c)). For a new clusters c c c=m i j created
by merging the clusters ci and cj, we can obtain that
V c V c c d µ c µ c

V c c d µ c µ c

( ) = ( ) + ( ( ), ( ))

+ ( ) + ( ( ), ( )), (9)
m j j m j

i i m i

where V(cj) and V(ci) have been calculated when pre-evalu-
ating the deterministic part of the clustering solution. They
can be employed directly when we evaluate the pigeon.

( )µ c c µ c c µ c c( ) = ( ) + ( )m j j i i m
1 is the centroid of the

new cluster cm. The connectivity fitness function f1(pi) of the
pigeon i can be updated by subtracting V(cj) and V(ci) from
f1(Cgeneral), and then adding the V(cm) of the union cluster cm
to the f1(Cgeneral). Repeating the above procedures until there
are not any clusters to be merged, the pigeon’s connectivity
fitness function can be obtained as f1(pi).

Figure 2 (Color online) Encoding of the clustering solution (pigeon).

Algorithm 1: GeneratePigeon (Sr, Tr, Nnearest, Np)

Input: The sets of the relevant links’ start nodes Sr and end nodes Tr, adjacency
matrix Nnearest, the number of the pigeon flock Np.

Parameter initialization: the size of considered neighborhood L.
for i=1:Np

for j=1:size(Sr)
p N j LS= ( ( ), ceil( × rand(1)))

i j, nearest r if p jT ( )
i j, r

end for
end for
Output: the position of pigeon flock pi, i=1, 2, …, Np.
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Considering the compactness fitness function, f2(Cgeneral) is
the sum of the penalty value that the nodes and their nearest
neighbors within the designated range, are not clarified into
the same cluster. As mentioned before, the ith pigeon means
the merging of some different clusters, which results in the
consequence, some nodes and their neighbors within the
specified range that does not belong to the same cluster are
classified into the same category. Then the penalty imposed
on these nodes should be subtracted from the f2(Cgeneral) to get
the pigeon’s compactness fitness function f2(pi).

3.4 Implementation of CMOPIO

(1) Discretization of PIO
To address the MOC problem, the combinational PIO is

the essential tool. In this subsection, to bridge the continuous
space and the discrete space, an auxiliary vector ζi=[ζi,1, ζi,2,
…, ζi,dim] with { }1, 0,  1i j, , corresponding to the ith pi-
geon’s position vector pi is introduced as

t
p t p t
p t p t( ) =

1,     if  ( ) = ( ),
1,       if   ( ) = ( ),
0,       otherwise.

(10)i j

i j j

i j j,

, center,

, gbest,

From the definition of ζi, the velocity update in eq. (6) can
be re-expressed as

t t
r t t
r t t

v v( + 1) = e ( )
+ (1 log ( + 1))(1 ( ))

+ log ( + 1)( 1 ( )). (11)

i
R t

i

T i

T i

( +1)

1

2

max

max

Then the vector ζi(t+1) for the next iteration time will be
obtained as

t
t v t
t v t( + 1) =

1,       if  ( ) + ( + 1) > ,
1,     if  ( ) + ( + 1) < ,

0,       otherwise,

(12)ij

i j i j

i j i j

, ,

, ,

where β>0. Finally, the following rule is gained to identify
the entries of the new position vector of pigeon i.

p t
p t t
p t t( + 1) =

( ),     if ( + 1) = 1,
( ),     if ( + 1) = 1,

,       otherwise,

(13)i j

j i j

j i j,

gbest, ,

center, ,

where κ is randomly selected from the nearest neighbor of
the node pi,j(t).
In the combinational PIO, the introduction of auxiliary

vector ζi associated with the position vector pi allows the
transition from the combinatorial state to the continuous state
and vice versa.
(2) CMOPIO with the ring topology
In order to alleviate premature convergence and enhance

the flock diversity of PIO, a ring topology is introduced in
this subsection. Based on the topological structure, the
CMOPIO based on the Pareto dominance ranking [38] and
the crowded distance selection mechanism [39] are con-
structed. In the studies carried out in ref. [40], it was de-
monstrated that a ring topology is capable of contributing to
stable niching behavior.
As shown in Figure 4, a ring topology with six pigeons is

exemplified. Each pigeon interacts only with its immediate
neighbors and every pigeon i possesses a local memory to
store its neighborhood best position pnbest_i. The neighbor-
hood of the pigeon i is only composed of the pigeons i−1 and
i+1, if i is the first pigeon, then its neighborhood includes the
second pigeon and the last pigeon, if i is the last pigeon, then

Figure 3 (Color online) Reconstruction of the full-length clustering solution.
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that of the pigeon i consists of the first pigeon and the pigeon
Np−1. Such a ring structure effectively limits the transmis-
sion speed of information between the pigeons, hence alle-
viates the dilemma of premature convergence.
After the introduction of ring topology in CMOPIO, the

update eqs. (10)–(13) of the ith pigeon’s position and velo-
city will be rewritten by replacing the flock’s historical best
position pgbest with its neighborhood historical best position

pnbest_i=[pnbest_i,1, pnbest_i,2, …, pnbest_i,dim] and substituting the
central position pcenter with the local neighborhood center
position pcenter_i=[pcenter_i,1, pcenter_i,2, …, pcenter_i,dim]. There-
fore, eqs. (10) and (13) should be re-expressed as

t
p t p t
p t p t( ) =

1,     if ( ) = ( ),
1,       if ( ) = ( ),
0,       otherwise,

(14)i j

i j i j

i j i j,

, center_ ,

, nbest_ ,

p t
p t t
p t t( + 1) =

( ),     if ( ) = 1,
( ),     if ( ) = 1,

,       otherwise.

(15)i j

i j i j

i j i j,

nbest _ , ,

center _ , ,

The typical characteristic of multi-objective optimization
problems is that they have several conflicting objectives and
their feasible solution is not unique. There is one issue to be
solved when applying CMOPIO to address the MOC pro-
blem, that is the selection of the historical personal best
position ppbest_i and the historical neighborhood historical
best position pnbest_i. In the CMOPIO, both the Pareto dom-
inance technique and the crowded distance selection me-
chanism are combined to select the best position. A
neighborhood best archive NBAi with the maximum capacity
of Nnba is provided to store the non-dominated neighborhood
historical best position within the ith pigeon’s neighborhood
[41]. The whole framework of the CMOPIO for solving the
MOC optimization problem is summarized as Algorithm 2.

Figure 4 (Color online) CMOPIO with ring topology

Algorithm 2: Solving framework for the MOC using the CMOPIO

Parameter initialization: map and compass factor R, the number of pigeons Np, neighborhood best archive NBAi, i=1,2,…, N, the maximum capacity Nnba of archive,
historical personal best position ppbest_i, i=1,2,…, Np, transition factor α, maximum number of iterations Tmax, specified size of the node’s nearest neighborhood L.
Input: The dataset with Ndata nodes in Ddim-dimensional space.
1 Calculate the dissimilarity dij between the nodes i and j, meanwhile, rank it to generate the adjacency matrix Nnearest.
2 Construct the MST using the Prim’s algorithm based on Nnearest.
3 Compute the similarity weight of each MST edge using eq. (8).
4 Classify these MST edges into the relevant links set Er and the fixed links set Ef by ranking the edges’ similarity weight in ascending order. Meanwhile, store the start
nodes and end nodes of the relevant links in the set Sr and Tr, respectively.
5 For Ef, generate the deterministic representation Cgeneral for all the pigeons, and carry out the pre-evaluation of Cgeneral.
6 Initialize the pigeon flock using Algorithm 1. GeneratePigeon (Sr, Tr, Nnearest, Np).
7 Evaluate the pigeon flock fi=[f1(pi), f2(pi)], i=1, 2, …, Np as described in Section 3.3.
8 Select the pigeon to be saved in NBAi, i=1, 2, …, Np and ppbest_i, i=1, 2, …, Np based on the Pareto non-dominant ranking mechanism and the crowded distance. Sort
NBAi using the Pareto dominance technique, discard the redundant tuples if its size exceeds Nnba.

if i=1, then temp NBA p p p_ = ( )i N i ipbest_ p pbest_ pbest_ + 1 ,

if i=Np, then temp NBA p p p_ = ( )i i ipbest_1 pbest_ pbest_ 1 ,

otherwise, temp NBA p p p_ = ( )i i i ipbest_ + 1 pbest_ pbest_ 1 ,

NBAi=NonDominatedSort(NBA temp NBA_i i),
if NBA Nsize( ) >i nba, then NBA NBA N= (1 : , :)i i nba ,
pnbest_i=NonDominatedSort (p pi ipbest_

).
9 Update each pigeon’s leader pnbest_i, the first tuple of NBAi is selected as pnbest_i. NBAi =NonDominatedSort(NBAi), pnbest_i=NBAi(1,:).
10 Calculate the local neighborhood center position pcenter_i.

if i=1, then p p p p= ceil ( + + ) / 3i N i icenter_ p + 1 ,

if i=Np, then p p p p= ceil ( + + ) / 3i N icenter_ p 1 1 ,

otherwise, ( )p p p p= ceil ( + + ) / 3i i i icenter_ 1 + 1
.

11 Update the velocity vi and the position pi of all the pigeons using eqs. (11) and (15).
12 Return to Step 7 to continue until the termination condition t≥Tmax is reached.
13 Output the Pareto front NBA and the Pareto optimal solution set, reconstruct and decode the Pareto optimal solution. Then the cluster of the dataset can be obtained.
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In the proposed solving framework, the following main
parameters play a significant role in the convergence rate and
optimization results.
(1) Map and compass factor R. As given in eq. (11), R is

used to control the impact of the previous velocity on the
current one. The smaller R is, the larger e−Rt is. This means
the pigeon gains more initial velocity, which is beneficial to
improve the global search ability. Conversely, a larger R
indicates greater local exploration ability.
(2) Transition factor α. α is used to realize the smooth

transition from the map and compass operator to the land-
mark operator. Meanwhile, α represents the proportion that
pigeon relies on the central position of the flock pcenter and
individual’s globally optimal location pgbest, rather than the
previous velocity to adjust the position.
(3) λ is a problem-specific parameter, which determines

the encoding length of the pigeons, the smaller the value, the
shorter the length of pigeons. The reduced-length pigeon
becomes full-length pigeon when λ=1.
(4) Nnba is used to limit the capacity of the neighborhood

best archive.
(5) In adjacency matrix Nnearest, the differences among each

node are sorted in ascending order. Hence, for a given node,
the similarity between it and the first L nodes is stronger than
that of the rest nodes. L is used as the available size of the
node’s nearest neighborhood when generating a novel link to
replace the removed relevant link.

4 Simulation experiments

4.1 Simulation results

In this section, simulation experiments on the clustering
analysis of a series of datasets with different types and
properties using the proposed CMOPIO are carried out. The
spherical-type dataset, irregular-type dataset, and shape-type
dataset are considered [42]. The parameters are given as in
Table 1. A total of five independent executions for each
problem instance are performed. Each independent execu-
tion of the clustering methods generates a set of Pareto op-
timal solution candidates. Some clustering solutions from the

set are chosen to illustrate in the following simulation fig-
ures.
The clustering results of five different datasets are shown

in Figures 5–9. Figure 5 shows the clustering result of the
smile dataset, where Figure 5(a) is the exhibition of the data
with the label, Figure 5(f) is the curve of the Pareto front
representing the set of the optimal clustering fitness function
value. According to the requirements of the clustering in-
dexes, different optimal clustering results can be obtained.
Figure 5(b) describes the clustering result corresponding to
point A on the Pareto front curve that has been given in
Figure 5(f). Figure 5(c)–(e) are the clustering results corre-
sponding to points B, C and D on the Pareto front curve,
respectively. From the clustering results of the smile dataset
(Figure 5), the spiral dataset (Figure 6), the first square da-
taset (Figure 7), the second square dataset (Figure 8), and the
third square dataset (Figure 9), it can be observed that the
proposed clustering algorithm can effectively realize the data
clustering.
To illustrate the effect of the parameter λ (relating to the

length of the pigeon representation) on the performance of
the CMOPIO, simulations on some of the above datasets
with λ=0.2, λ=0.6, λ=0.9 are carried out. The simulation
platform is MATLAB 2019a. The other parameters have the
same values as those in Table 1. The running time of the
program is used as the evaluation index. The results are given
in Table 2. From Table 2, it can be observed that the larger
the value of λ, the longer it takes to run the program. Hence,
it can be proved that the employment of the reduced-length
pigeon representation approach and the pre-evaluation of the
fixed MST edges effectively depress the computation load.

4.2 Comparisons with the other clustering algorithms

The performance comparisons of the proposed CMOPIO
algorithm with two existing prevalent cluster algorithms, the
k-means algorithm [43] and the k-medoids algorithm [44],
and the most popular multi-objective optimization algorithm,
non-dominated sorting GA-II (NSGA-II) [45] are carried out
in this subsection. The parameters such as the population size
and the maximum number of iterations of NSGA-II are the

Table 1 The parameters in the proposed algorithm

Symbol Meanings Value

λ The parameter for identify the length of the pigeon 0.2

Np The size of the pigeon flock 20

m The number of fitness functions 2

Tmax The maximum number of iterations 80

Nnba The maximum capacity of the neighborhood best archive 15

α Transition factor 3

L The specified size of the node’s nearest neighborhood Ndata/6

R The map and compass factor 0.3
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same as those in Table 1. The datasets mentioned above are
still employed as the test sources, which are repetitively
listed in Table 3. Two evaluation indexes, the adjusted rand
index (ARI) and the average silhouette coefficient (ASC),
are used to evaluate the clustering results for four different
clustering algorithms. The average value of the ARI and the

ASC of 20 independent runs are calculated as the quantita-
tive evaluation of every approach. The experimental results
on five datasets are given in Table 3. All the four algorithms
have good clustering ability when solving the clustering of
these datasets.
According to Table 3, it can be obtained that although the

Figure 6 (Color online) Clustering results of the spiral dataset. (a) The exhibition of the data with the label; (b) the clustering result corresponding to point
A in (f); (c) the clustering result corresponding to point B in (f); (d) the clustering result corresponding to point C in (f); (e) the clustering result corresponding
to point D in (f); (f) the curve of the Pareto front.

Figure 5 (Color online) Clustering results of the smile dataset. (a) The exhibition of the data with the label; (b) the clustering result corresponding to point
A in (f); (c) the clustering result corresponding to point B in (f); (d) the clustering result corresponding to point C in (f); (e) the clustering result corresponding
to point D in (f); (f) the curve of the Pareto front.
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values of the ARI for the first square dataset and the second
square dataset of the CMOPIO are smaller than that of the
other two approaches. Our proposed CMOPIO algorithm has
better performance than the k-means, NSGA-II and the k-
medoids in terms of the ARI and the ASC.

5 Conclusions

This paper focuses on addressing the MOC problem using
the proposed CMOPIO approach. The employment of the
reduced-length pigeon representation approach and the pre-

Figure 8 (Color online) Clustering results of the second square dataset. (a) The exhibition of the data with the label; (b) the clustering result corresponding
to point A in (f); (c) the clustering result corresponding to point B in (f); (d) the clustering result corresponding to point C in (f); (e) the clustering result
corresponding to point D in (f); (f) the curve of the Pareto front.

Figure 7 (Color online) Clustering results of the first square dataset. (a) The exhibition of the data with the label; (b) the clustering result corresponding to
point A in (f); (c) the clustering result corresponding to point B in (f); (d) the clustering result corresponding to point C in (f); (e) the clustering result
corresponding to point D in (f); (f) the curve of the Pareto front.

10 Chen L, et al. Sci China Tech Sci



evaluation of the fixed MST edges effectively depress the
computation load and hence make it possible to be applied
even for the large-scale datasets. Based on the discretization
of PIO, the CMOPIO with a ring topology is developed. In
the CMOPIO, pigeons only interact with the pigeons in their
neighborhood. Meanwhile, the update of the pigeon’s posi-
tion and velocity relies on each pigeon’s neighborhood rather
than the global best position. These improvements allow the
CMOPIO identify a variety of Pareto optimal clustering
solutions. Finally, the tests on some different datasets verify
the effectiveness of the CMOPIO algorithm.

Our future work will focus on some CMOPIO-based
clustering algorithms for organizing the communication to-
pology of the UAVs when multiple UAVs collaborate to
perform the complicated missions.

This work was supported by the Science and Technology Innovation 2030-
Key Project of “New Generation Artificial Intelligence” (Grant No.
2018AAA0102303), and the National Natural Science Foundation of China
(Grant Nos. 91948204, U1913602, and U19B2033).
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corresponding to point D in (f); (f) the curve of the Pareto front.
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