
Swarm and Evolutionary Computation 48 (2019) 134–144

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Discrete pigeon-inspired optimization algorithm with Metropolis acceptance
criterion for large-scale traveling salesman problem

Yiwen Zhong a,b,∗, Lijin Wang a,b, Min Lin a,b, Hui Zhang c

a College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
b Key Laboratory of Smart Agriculture and Forestry (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian Province 350002,
PR China
c J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA

A R T I C L E I N F O

Keywords:
Pigeon-inspired optimization
Traveling salesman problem
Comprehensive learning
Cooperative learning
Heuristic information
Metropolis acceptance criterion

A B S T R A C T

Pigeon-inspired optimization (PIO) algorithm, which is a newly proposed swarm intelligence algorithm, has
been mainly applied to continuous optimization problems. In this paper, a discrete PIO (DPIO) algorithm, which
uses the Metropolis acceptance criterion of simulated annealing algorithm, is proposed for Traveling Sales-
man Problems (TSPs). A new map and compass operator with comprehensive learning ability is designed to
enhance DPIO’s exploration ability. A new landmark operator, which has cooperative learning ability and can
learn from the heuristic information of TSP instance, is designed to improve DPIO’s exploitation ability. Aim to
enhance its ability to escape from premature convergence, the Metropolis acceptance criterion is used to decide
whether to accept newly produced solutions. Systematic experiments were performed to analyze the behaviours
of the map and compass operator and the landmark operator. The performance of DPIO algorithm was tested
on 33 large-scale TSP instances from TSPLIB with city number from 1000 to 85900. Simulation results show
that the proposed algorithm is effective and is competitive with most other state-of-the-art meta-heuristic algo-
rithms.

1. Introduction

Swarm intelligence (SI) is the collective behaviour of a population
of simple agents interacting locally with one another and with their
environment. Well-known examples in natural systems of SI include
bird flocks, fish schools, ant colonies, and animal herding etc. Pigeon-
inspired optimization (PIO) algorithm, which was first proposed by
Duan and Qiao [1], is a novel SI algorithm. In PIO algorithm, each
pigeon of the swarm has a position, a velocity, and a personal best
historical position, according to which it moves in the search space.
The search process of pigeon consists of two stages. In the first stage,
pigeon searches in solution space being guided by the best position
found by the swarm and the flying experience of itself. In the second
stage, pigeon is guided by the center of the positions of remaining suc-
cessful pigeons. To date, PIO algorithm and its variants are mainly used
for continuous problems, as we know, few paper has studied PIO algo-
rithm for classical combinatorial optimization problems, such as trav-
eling salesman problems (TSPs), quadratic assignment problems, knap-
sack problems, and job-shop scheduling problems, etc.

∗ Corresponding author. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
E-mail address: yiwzhong@fafu.edu.cn (Y. Zhong).

TSP is one of the classical NP-hard problems in combinatorial opti-
mization. The objective of TSP is to find a shortest route that visits each
city once and returns to the origin city. As an NP-hard problem, the
computational complexity of exact algorithms for TSP is exponential
with the number of cities. As for most NP-hard problems, it may be
enough to find workable solutions with limited computation resource.
As a result, a lot of interests have been focused on using efficient heuris-
tics and meta-heuristics to solve the TSP. In recent years, many meta-
heuristics have been proposed to solve large-scale TSP instances with
at least 1000 cities. Among all those meta-heuristics, SI algorithms are
most intensively studied. Those SI algorithms include ant-inspired algo-
rithms [2–7], bird-inspired algorithms [8–11], bat-inspired algorithms
[12,13], bee-inspired algorithms [14–16], African buffalo-inspired algo-
rithm [17], symbiotic organisms-inspired algorithms [18,19], and
hybrid SI algorithms [20,21], etc. Other meta-heuristics include genetic
algorithms [22–24], evolutionary algorithm [25], immune algorithm
[26], invasive weed optimization [27], artificial neural network [28],
and those algorithms based on local search [29–36], etc.

https://doi.org/10.1016/j.swevo.2019.04.002
Received 16 August 2018; Received in revised form 22 February 2019; Accepted 3 April 2019
Available online 9 April 2019
2210-6502/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.swevo.2019.04.002
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2019.04.002&domain=pdf
mailto:yiwzhong@fafu.edu.cn
https://doi.org/10.1016/j.swevo.2019.04.002

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

The learning strategy of PIO algorithm is similar to that of particle
swarm optimization (PSO) algorithm. Compared with PSO algorithm,
PIO algorithm can use different learning strategy in different stage and
use different learning strategy for different group of pigeons. This flex-
ibility may enhance PIO’s ability to balance exploration and exploita-
tion. Many studies have shown that PSO algorithm has good perfor-
mance on solving discrete and combinatorial optimization problems.
To study how to adjust PIO algorithm for discrete and combinatorial
optimization problems, this paper presents a discrete PIO (DPIO) algo-
rithm for TSPs. In DPIO, besides minus and plus operators are specifi-
cally redesigned for TSP, a new selection operator is designed to select
a ‘center’ for the second stage. Using those basic operators, map and
compass operator and landmark operator are redesigned for pigeon to
produce new position. In map and compass operator, comprehensive
learning, which is first proposed by Liang et al. [37] for PSO algo-
rithm, is used to replace the global best based learning to improve
the explorative ability. In landmark operator, cooperative learning and
heuristic information are combined to improve the exploitative abil-
ity. To further balance intensification and diversification, DPIO uses
the Metropolis acceptance criterion of simulated annealing (SA) algo-
rithm to decide whether to accept the new solutions. Systematic exper-
iments were performed to analyze the behaviours of DPIO algorithm.
The performance of DPIO algorithm was compared with other state-of-
the-art meta-heuristics on a wide range of large-scale benchmark TSP
instances. The simulation results confirm the effectiveness and compet-
itiveness of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 provides
a short description of basic PIO algorithm, TSP, and SI algorithms
for large-scale TSP. Section 3 presents our proposed DPIO Algorithm.
Section 4 analyzes the behaviors of DPIO Algorithm. Section 5 com-
pares the performance of DPIO algorithm with other state-of-the-art
meta-heuristics published in recent two years. Finally, in section 6 we
summarize our study.

2. Related work

2.1. Pigeon-inspired optimization algorithm

PIO algorithm, which mimics some of the homing characteristics
of pigeons, is a newly proposed SI algorithm. Specifically, two opera-
tors are designed by using some idealized rules of the homing charac-
teristics of pigeons: (1) map and compass operator which mimics the
homing behaviour guided by sun and magnetic particles; (2) landmark
operator which mimics the homing behaviour guided by landmark of
familiar region. Magnetoreception is a sense which allows an organ-
ism to detect a magnetic field to perceive direction, altitude or loca-
tion. Pigeons can sense the earth field by using magnetoreception to
shape the map in their brains. They regard the altitude of the sun
as compass to adjust the direction. As they are in unfamiliar areas
which are far from their home, they rely mainly on magnetoreception
and sun. Map and compass operator is designed to mimic this hom-
ing behaviour. Suppose that the search space is N-dimensional, then
the i-th pigeon of the swarm can be represented by a N-dimensional
vector, Xi = (xi,1, xi,2,… , xi,N). The velocity of this pigeon, which repre-
sents the position change of this pigeon, can be represented by another
N-dimensional vector Vi = (vi,1, vi,2,… , vi,N). The best previously vis-
ited position of the i-th pigeon is denoted as Pi = (pi,1, pi,2,… , pi,N).
The global best position of the swarm is g = (g1, g2,… , gN), and let
the superscripts denote the iteration number, then each pigeon is flying
according to the following two equations:

vt
i,j = vt−1

i,j e−Rt + r(gt−1
j − xt−1

i,j) (1)

xt
i,j = xt−1

i,j + vt
i,j (2)

where j = 1, 2, …, N; i = 1, 2, …, M, and M is the size of the swarm; R is
the map and compass factor, which is used to control the impact of the

latest velocity on the current velocity; r is random number, uniformly
distributed in [0, 1); and t = 1, 2, …, determines the iteration number.
Eq. (1) is used to calculate the pigeon’s new velocity according to its
latest velocity and the distance of its current position from the global
best experience. Then the pigeon flies toward a new position according
to (2).

When pigeon is in familiar areas which are near their home they
will fly mainly according the landmark. Landmark operator is designed
to mimic this homing behaviour. In the landmark operator, the number
of pigeons is decreased by half in each generation. The better part will
fly to destination guided by the center, and the worse part will follow
the better part. Let ct be the center of pigeons in better part at the t-th
iteration. The position updating rule for pigeon i at the t-th iteration
can be given by:

ct
j =

∑M
i=1 (x

t−1
i,j f (xt−1

i))

M
∑M

i=1 (f (x
t−1
i))

(3)

xt
i,j = xt−1

i,j + r(ct
j − xt−1

i,j) (4)

where j = 1, 2, …, N; i = 1, 2, …, M, and M is the size of the better part;
r is random number, uniformly distributed in [0, 1); and t = 1, 2, …,
determines the iteration number. Eq. (3) is used to calculate the center
of pigeons. Then the pigeon flies toward a new position according to
(4).

Two features of PIO algorithm, the dividing of its search process
and the dividing of swarm in the second stage, greatly contribute to its
success. Because the search process is divided into first stage and sec-
ond stage, PIO algorithm can use different search operator in different
stage, which may balance the explorative ability and the exploitative
ability more easily. The dividing of swarm, which reduces the remain-
ing swarm size by half, divides the swarm into successful group and
unsuccessful group, then PIO algorithm can design different search
strategy for different group. Dividing of swarm is a kind of division
of labor which is considered as a necessary property of SI [38]. Due
to its simplicity and flexibility, PIO algorithm has been successfully
applied in many fields, such as active disturbance rejection control
for small unmanned helicopters [39], linear-quadratic regulator con-
troller design for quadrotor [40], fuzzy energy management strategy
for parallel hybrid electric vehicle [41], detecting protein complexes
from dynamic protein-protein interaction networks by density based
clustering [42], three-dimensional path planning for uninhabited com-
bat aerial vehicle [43], node self-deployment for underwater wireless
sensor networks [44], control parameters optimization in automatic
carrier landing system [45], and robust attitude control for reusable
launch vehicles [46] etc.

2.2. Travelings salesman problem

TSP is one of the most famous NP-hard combinatorial optimization
problems. No known exact algorithm with polynomial time complexity
can guarantee it to find a global optimal route. Consider a TSP instance
with n cities, we can model TSP as follows. Suppose a distance matrix
D = (di,j)n∗n is used to store distances between all the pair of cities,
where each element di,j of matrix D represents the distance from city
i to city j. We can use x, a permutation of cities which indicates the
visiting sequence of cities, to represent a solution. The goal of TSP is to
find a solution x that minimizes

f (x) =
n−1∑
i=1

dxi,xi+1
+ dxn,x1

(5)

2.3. Swarm intelligence algorithms for large-scale TSP

In recent years, many SI algorithms have been proposed for
large-scale TSP. Those SI algorithms may be construction-based,

135

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

perturbation-based, or combination of them. Most of the construction-
based algorithms are ant-inspired. Ismkhan [2] proposed an ant colony
optimization algorithm (ACO) with three effective heuristics (ESACO)
to handle large-scale TSP instances. The three effective heuristics
used in ESACO include 2-opt local search with candidates-set updated
according to pheromone information, pheromone representation using
sparse matrix with linear space complexity, quick next move selection
with the help of pheromone sparse matrix. Yan et al. [3] proposed a
modified ant system (MAS) where adaptive parameter control strate-
gies are used both by tour construction and pheromone updating. Using
those adaptive parameter control strategies, MAS can obtain better bal-
ance between exploitation and exploration. Yong [4] proposed a hybrid
Max-Min ant (HMMA) system which is integrated with a four vertices
and three lines inequality. In each iteration of HMMA, if the tour con-
structed by an ant is not better than the previous tour, the four vertices
and three lines inequality is used to enhance the new tour. Escario et
al. [5] proposed an ant colony extended (ACE) algorithm with role divi-
sion of ants. In ACE, ants are divided into patrollers and foragers and
the number of each kind of ant is adaptively changing. A patroller uses
pheromone or heuristic information to locate sources of food before
the foraging activity begins. A forager uses pheromone only to exploit
the food sources discovered by patrollers. Zhang and feng [6] proposed
an ACO algorithm with two-stage pheromone update rule. In the first
stage, the top r iterative optimal solutions are employed to update
pheromone, and in another stage, only the iteration-best solution or the
global-best solution is used to update pheromone. Ning et al. [7] pro-
posed a best-path-updating information-guided ACO algorithm where
strengthened pheromone update mechanism and a novel pheromone
smoothing mechanism are designed to improve its performance. The
only construction-based SI algorithm, which is not ant-inspired, is set-
based PSO (S-PSO) [8]. In S-PSO, solution and velocity are defined as
crisp set and set with possibilities respectively. S-PSO uses edges in
velocity and original position to construct new position, and this is quite
different from the traditional PSO algorithm where perturbation-based
updating is used to produce new solution.

Perturbation-based algorithms may be inspired by many biologi-
cal systems, such as bird flocking, social insects, animal herding, etc.
Zhong et al. [9] proposed a discrete comprehensive learning PSO (D-
CLPSO) algorithm where Metropolis acceptance criterion is used to
decide whether to accept newly produced solution. Ouaarab et al. [10]
proposed an improved discrete cuckoo search algorithm which uses 2-
opt move and double-bridge move to produce new solution. Zhou et
al. [11] proposed a novel discrete cuckoo search algorithm which uses
learning operator, ‘A’ operator and 3-opt to enhance the optimal tour
in each iteration. Marinakis et al. [14] proposed a honey bees mat-
ing optimization (HBMO) which combines the multiple phase neigh-
borhood search (MPNS), greedy randomized adaptive search procedure
(GRASP), and the expanding neighborhood search (ENS) strategy. In
HBMO, MPNS-GRASP is used to create initial population, and ENS is
used to improve the broods produced by the mating flight of the queen.
Wong et al. [15] proposed a bee colony optimization (BCO) which is
integrated with a fixed-radius near neighbor 2-opt heuristic. In BCO, a
frequency-based pruning strategy is proposed to limit that only a sub-
set of the promising solutions to undergo 2-opt heuristic. Zhong et al.
[16] proposed a hybrid discrete artificial bee colony (HDABC) algo-
rithm where threshold acceptance criterion is used to decide whether
the produced new solution is accepted. Osaba et al. [12] proposed an
improved discrete bat algorithm (IDBA) which uses hamming distance
between bats to represent velocity. In IDBA, 2-opt and 3-opt opera-
tors are used to produce a number of neighbors, and the best one
is selected as current solution. Saji et al. [13] proposed a novel dis-
crete bat algorithm (DBA) where solution and velocity are represented
by vector of cities and permutation of cities respectively. In DBA, 2-
exchange crossover heuristic is used to produce new solutions. Odili et
al. [17] proposed African buffalo algorithm where buffalo searches for
best route guided by the personal best location and global best loca-

tion. Ezugwu and Adewumi [18] proposed a discrete symbiotic organ-
isms search (SOS) algorithm where swap, inverse, and insert operators
are used to convert the continuous SOS into discrete form. Ezugwu et
al. [19] proposed a SA-based SOS (SOS-SA) algorithm where Metropo-
lis acceptance criterion of SA is used to decide whether to accept newly
produced solution. This probabilistic acceptance strategy can assist the
SOS in avoiding being trapped into local minimum and also increase its
level of diversity.

Some hybrid SI algorithms combine both construction-based and
perturbation-based strategies. Chen et al. [20] presented a hybrid ant
colony system which uses the ideas of PSO, SA, and genetic algorithm
(GA) to enhance its performance. Deng et al. [21] presented a hybrid
ACO algorithm where GA and PSO are used to produce good initial
allocation of pheromone for ACO.

Most of the SI algorithms are first proposed for continuous opti-
mization problems. Several strategies, such as using map function to
bridge continuous space and discrete space and redesigning basic oper-
ators for discrete space etc., have been used to extend those algo-
rithms for combinatorial optimization problems. Among those strate-
gies, redesigning basic operators for discrete space has been success-
fully used in S-PSO [8], D-CLPSO [9] and HDABC [16] for TSP. S-PSO
uses edges in velocity and original position to construct new position. In
general, the intensification ability of construction-based meta-heuristics
is not as good as perturbation-based meta-heuristics. D-CLPSO, which
always uses comprehensive-learning, may have not enough diversity
in later stage. HDABC, which always uses randomly selected bee as
exemplar, may have not enough intensification ability in the early
stage. Those shortcomings impel us to strive for new algorithm with
better balance between exploration and exploitation. To this aim, we
redesign the basic operators of PIO algorithm to extend it for solving
the TSP.

3. Discrete pigeon-inspired optimization algorithm

To apply (1)–(4) of PIO algorithm on TSP, we must redefine the
position, velocity and all necessary operators for TSP. We use a vector
x, which is a linked list storing the set of edges in tour, to represent
position. Each element xj in x represents an edge ej,xj

from city j to city
xj. In order to guarantee that each position is a valid solution, x must
be a permutation of cities and xj ≠ j for each j ∈ {1,2,3,… , n}. Using a
TSP instance with five cities as an example, suppose x = (3, 5, 2, 1, 4),
then x represents a solution with five edges (e1,3, e2,5, e3,2, e4,1, e5,4). So
the route of solution x is 1 → 3 → 2 → 5 → 4 → 1. Similarly, we use
a vector v = (v1, v2,… , vn) to represent velocity, where each element vj
represents an edge ej,vj

from city j to city vj. For a velocity vector v, the
only constrain is vj ≠ j for each j ∈ {1,2,3,… , n}. This constrain can
guarantee that each element of v is a valid edge.

3.1. Basic operators of DPIO algorithm

Given two elements x1,j and x2,j from two position vector X1 and
X2, the minus operator ⊖, which is used to produce velocity vj in j-th
dimension, is defined as (6):

vj = x2,j ⊖ x1,j =
{

x2,j, x2,j ≠ x1,j

e ∈ nc(j), x2,j = x1,j
(6)

where nc(j) is next visiting city list of city j and e is a city randomly
selected from all cities in nc(j). Using (6), the result of minus operator
between two position X2 and X1 is a velocity V where each element
vj is equal to x2,j ⊖ x1,j. For j-th velocity component vj, if x2,j is not
equal to x1,j, then vj = x2,j, otherwise, velocity component is randomly
selected from nc(j). There may have three different ways to create nc(j)
for a city j: (1) Empty, which means that nc(j) is empty; (2) Full, which
means that nc(j) includes all other cities; and (3) Heuristic, which means
that nc(j) is a nearest city list which is made of k nearest cities, where

136

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

k is a parameter representing the length of nc(j). According to the stage
pigeon is in, pigeon can select a most suitable way to create nc(j).

In the second stage of basic PIO algorithm, pigeons use (3) to cal-
culate the center and use center as exemplar to guide its flying. Appar-
ently, (3) is meaningless for discrete data in X. Intuitionally, we may use
mode (the value that appears most often) in place of center for discrete
data. But using mode only may limit the exemplar to the most frequent
one, and this is quite different from (3) where every component has con-
tribution the center. Considering this, we randomly select a component
from current swarm to represent the center. In this way, each compo-
nent has a chance to be selected and more frequent one has bigger prob-
ability to be selected. To accomplish this, we define a new selection oper-
ator as follows. Given a list of position components (x1,j, x2,j,…, xm,j) in
j-th dimension, the selection operator ⊎, which is used to calculate the
exemplar component cj in j-th dimension, is defined as (7). Similar to
position component xj and velocity component vj, the meaning of exem-
plar component cj also represents an edge from city j to city cj.

cj = ⊎m
i=1xi,j = xk,j, where k is randomly selected from (1,2,… ,m) (7)

Given a position x and a velocity component vj, the plus operator ⊕,
which is used to produce a new position, is defined as (8).

x ⊕ vj = min(inverse(x, vj), insert(x, vj), swap(x, vj)) (8)

where inverse(x, vj), insert(x, vj), and swap(x, vj) are inverse, block insert,
and swap operator respectively. The inverse(x, vj) operator produces a
new solution by inversing the visiting sequnce of cities between xj and
vj. The insert(x, vj) operator produces a new solution by moving a block
of cities leading by vj to the front of xj. The swap(x, vj) operator pro-
duces a new solution by swapping the positions of xj and vj. This plus
operator is a greedy hybrid operator which has been used by zhong
et al. in Ref. [9]. This is a kind of operator with multiple neighbors,
which selects the best one from those neighbors. Specifically, for the
edge ej,vj

represented by velocity component vj, it uses inverse opera-
tor, block insert operator and swap operator to produce three neighbor
solutions. And the best one is used as the candidate solution. In block
insert operator, the length of block is randomly produced for each insert
operation.

Using the new operators defined above, we can define flying opera-
tor as (1).

x = x ⊕ (P ⊖ x)

= ((((x ⊕ (p1 ⊖ x1))⊕ (p2 ⊖ x2)),…)⊕ (pn ⊖ xn)) (9)

In DPIO algorithm, both the map and compass operator and the
landmark operator use (1) to produce new solution, but the meaning
of exemplar component pj and the next visiting city list nc in minus
operator (6) are dependent on the stage pigeon is in. If a pigeon is in
the first stage, then pj is the j-th element of personal best solution of
a randomly selected pigeon and Full strategy is used to create nc. If a
pigeon is in the second stage, then pj is the j-th element of the ‘center’
produced by selection operator (7) and Heuristic strategy is used to create
nc.

In the case of map and compass operator, there are two significant
differences between (1) and the original one (represented by (1) and
(2)):

(a) In the original one, only the global best solution is used to guide
the flying of pigeon. In (1), a pigeon can not only learn from
the global best solution, but also can learn from best solution of
different pigeon for different dimension. This is a kind of com-
prehensive learning strategy, which was first proposed by Liang
et al. [37], and was also successfully used for TSP [9]. This fea-
ture makes the pigeons have more exemplars to learn from and a
larger potential space to fly, as a result, it may enable the DPIO
to make use of the information in swarm more effectively to gen-
erate better quality solutions frequently.

(b) Different from the original one, (1) does not use original veloc-
ity. In stead, the minus operator (6) will randomly produce a new
velocity from next visiting city list in case the two operands are
the same. For map and compass operator, we use Full strategy to
create the next visiting city list for (6). The philosophy behind
this scheme lies in two aspects: (1) in most cases, the edges in
original velocity are already in current position. In this case, to
add the edges in original velocity into current position is mean-
ingless; (2) to produce new velocity from all available cities may
enhance diversity.

In the case of landmark operator, there are also two significant dif-
ferences between (1) and the original one (represented by (3) and (4)):

(a) The meaning of center-guiding is different. In DPIO, exem-
plar component is a randomly selected component from current
swarm. This is a kind of cooperative learning which not only
can guarantee that each pigeon has a chance to be selected as
exemplar, but also can keep appropriate diversity for the swarm.

(b) In DPIO algorithm, heuristic information is used to improve its
intensification ability. Specifically, in the landmark operator, we
use Heuristic strategy to create the next visiting city list for (6).

3.2. Metropolis acceptance strategy

Aim at obtaining better balance between diversification and intensi-
fication, DPIO uses the Metropolis acceptance criterion of SA to deter-
mine whether a worse solution should be accepted as new current solu-
tion. Suppose x is the current solution with a cost f(x) and y is the
newly generated solution with a cost f(y). When f(y) ≤ f(x), it means
the generated solution y is not worse than the current solution x. Then y
is accepted as new current solution. On the contrary, when f(y) > f(x),
it means y is worse than x, then DPIO will use the probability mecha-
nism of Metropolis acceptance criterion to determine whether or not to
accept y. The acceptance probability is described as (10).

p =
{

1, if f (y) ⩽ f (x)
e−(f (y)−f (x))∕t , otherwise

(10)

where t > 0 is the parameter temperature.

Algorithm 1 Algorithm for creating initial temperature list.
Input: len The length of initial temperature list, X Set of
solutions
Output: A priority list of temperature
1: Create an empty priority list lst
2: while the length of lst is less than 2 × len do
3: Select a solution Xi from X randomly
4: Produce candidate solution y using inverse, insert, or
swap operator
5: Insert |f(y) − f(Xi)| into lst
6: if y is better than Xi then
7: Xi = y
8: end if
9: end while
10: Remove the top len∕2 elements from lst
11: Remove the bottom len∕2 elements from lst
12: Return lst

In order to apply the Metropolis acceptance criterion of SA algo-
rithm, DPIO algorithm must specify a cooling strategy for parameter t.
In the literature of SA algorithm, there exists many cooling strategies.
To simplify the implementation of DPIO algorithm, we use the idea of
list-based cooling scheme proposed in list-based SA [33]. In list-based
cooling scheme, the initial temperature and the temperature cooling
are determined by the algorithm automatically. Specifically, a list of
temperature is created first, and then, in each iteration, the maximum

137

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

value tmax in the list is used as current temperature t to be used in (10).
The temperature list is updated adaptively according to the topology of
the solution space of the problem and the search process (see Algos. 2
and 3). Algo. 1 is used to create initial temperature list. Like in Ref.
[9], DPIO uses absolute value of cost difference as initial temperature.
Different from Ref. [9], some extreme values are deleted to reduce the
disturbing of noise.

3.3. Implementation of DPIO algorithm

Algo. 2 describes the flying operator of pigeon in each iteration, and
Algo. 3 describes the pseudo code of DPIO algorithm. In Algo. 2, vari-
able total and variable counter are used to produce new temperature for
temperature list. In case a worse position is accepted, line 18 calculates
the corresponding temperature t, and then it is added to total in line
19 and the corresponding counter counter is increased by 1 in line 20.
Late in Algo. 3, the average of t is used to update the temperature list
in line 23. In Algo. 3, input parameter M, MG, R, and L represents the
size of swarm, the maximum generation, the ratio of first stage to the
maximum generation, and the length of temperature list. Variable fs
represents the iteration times of first stage, variable dg is used to store
the generation where next swarm size decreasing happens, and variable
ss is used to store the swarm size of remaining successful pigeons. In
the second stage of DPIO algorithm, line 9 and line 10 of Algo. 3 divide
the remaining successful swarm into successful group and unsuccessful
group, and the successful group includes at least 2 pigeons. This divid-
ing will keep unchanged for the half remaining generations. Line 11
of Algo. 3 is used to calculate the generation where next swarm size
decreasing happens. The philosophy behind keeping a minimum size of
2 for successful group is to have exemplar to learn from. In line 17, the
pigeons in remaining successful swarm call Algo. 2 to search for new
solution. In line 19, the pigeons in unsuccessful swarm will randomly
follow a pigeon in successful swarm to search for new solution.

Algorithm 2 Algorithm of flying operator.
1: for each dimension j in (1, 2, …,n) do
2: if pigeon Xi is in first stage then
3: Select another pigeon k randomly
4: vj ⟸ pk,j ⊖ xi,j
5: else
6: cj ⟸ ⊎m

k=1xk,j
7: vj ⟸ cj ⊖ xi,j
8: end if
9: y ⟸ Xi ⊕ vj
10: p ⟸ acceptance probability calculated using (10)
11: r ⟸ a random number in range [0, 1)
12: if r ≤ p then
13: Xi ⟸ y
14: if f(Xi) < f(Pi) then
15: Pi ⟸ Xi//To store new personal best position
16: end if
17: if f(y) − f(Xi) > 0 then
18: t ⟸ −()f(y) − f(Xi)∕ln(r)//To calculate the
corresponding temperature
19: total ⟸ total + t
20: counter ⟸ counter + 1
21: end if
22: end if
23: end for

The time complexity of DPIO algorithm can be analyzed as follows.
Among the four basic operators of DPIO algorithm, minus operator ⊖

and selection operator ⊎ are independent of the city number n. The
plus operator ⊕ can be implemented by two steps. The first step is to
evaluate inverse neighbor, insert neighbor, and swap neighbor. The time
complexity of evaluation is O(1). The second step is to create the best

Fig. 1. Performance comparison of DPIO algorithms with different temperature
list length L.

neighbor. If linked list is used to represent a solution, then the time
complexity of insert operator and swap operator is O(1), but the time
complexity of inverse operator is O(n). As a result, the worst-case time
complexity of plus operator is O(n). Because the flying operator uses plus
operator n times, the time complexity of flying operator is O(n2). The
function of Algo. 2 is to implement flying operator, so the time com-
plexity of Algo. 2 is O(n2). The main structure of Algo. 3 is a nested
loop. The iteration times of outer loop is maximum generation MG, and
the iteration times of inner loop is swarm size M for each outer loop.
In each iteration of inner loop, Algo. 2 with time complexity O(n2) is
called to produce a neighbor solution. As a result, the time complexity
of DPIO algortihm is O(MG × M × n2).

4. Behaviours analysis

In this section, three experiments were performed on four bench-
mark TSP instances to analyze the behaviors of DPIO algorithm. The
first experiment was used to tune the parameters of DPIO Algorithm
and analyze the convergence behaviours of DPIO algorithm. The sec-
ond experiment was used to analyze the behaviour of map and com-
pass operator. And the third was carried to analyze the behaviour of
landmark operator. Those three experiments were carried on Pr1002,
D2103, Fnl4461, and Pla7397 instances from TSPLIB. The best known
integer solution of those problems are 259045, 80450, 182566 and
23260728 respectively. The stop condition is 1000 generations and the
swarm size is 10. Percentage error of average tour length to best known
tour length, which was calculated on 100 runs, is used to compare DPIO
algorithm with different parameters or different variants of DPIO Algo-
rithm.

4.1. Parameter tuning and convergence analysis

There are two main parameters in DPIO Algorithm. Parameter L,
which is the length of temperature list, is used to control the tempera-
ture change for Metropolis acceptance criterion. Parameter R, which is
the ratio of first stage to total generation, is used to control the itera-
tion times of first stage and second stage. To find a suitable list length
L, we have tested 9 different values for L from 120 to 200 with a step
10. Fig. 1 is the relation between percentage error and L. Similar to
those results obtained by Refs. [9,33], we have following results: (1) the
optimal list length is instance-dependent, for example, the optimal list
length is 170 for Pr1002, but the optimal list length is 140 for Pla7397;

138

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

Algorithm 3 DPIO algorithm.
Input: M Swarm size, MG Maximum generation, R Ratio of first stage,
L Length of temperature list;
Output: best solution found;
1: fs ⟸ R × MG //The generation where first stage ends
2: dg ⟸ fs + 1 //The generation where swarm size decreases by
half
3: ss ⟸ M //The actual swarm size
4: Initialize Xi, Vi, and Pi for each pigeon i;
5: g ⟸ the best P among all pigeons;
6: Call Algo. 1 to create initial temperature list lst with length L;
7: for cg = 1 to MG do
8: if cg = dg then //Need to decrease the swarm size
9: Sort the pigeons from best to worst;
10: ss ⟸ ss ÷ 2 + 1 //Decrease the swarm size by half
11: dg ⟸ (dg + MG) ÷ 2 //The next generation when the
swarm size is decreased by half
12: end if
13: tmax ⟸ The maximum value in lst. //tmax is used by line 10 in
Algo. 2
14: total ⟸ 0, counter ⟸ 0 //Those variables are maintained by
line 19 and line 20 in Algo. 2
15: for i = 1 to M do
16: if i ≤ ss then //For pigeons in successful swarm
17: Use Xi to call Algo. 2
18: else//For pigeons in unsuccessful swarm
19: Randomly select a successful pigeon to call Algo. 2
20: end if
21: end for
22: if counter > 0 then
23: Replace the maximum value of lst with total∕counter
24: end if
25: g ⟸ the best P among all pigeons;
26: end for
27: Return g.

(2) list length is more robust on small instances than on large instances,
for example, big list length will notably deteriorate the performance
of DPIO on Pla7397. As a result, list length should not be too big for
large TSP instances. In terms of the average performance on those four
instances, DPIO has best performance when L is 150. According to the
simulation results, the temperature list length L is set to 150 in the
following simulations.

To find a suitable ratio R, we have tested 9 different values for R
from 0.1 to 0.9 with a step 0.1. Fig. 2 is the relation between percent-
age error and R. The optimal ratio R for Pr1002, D2103, Fnl4461, and
Pla7397 is 0.4, 0.4, 0.5, and 0.3 respectively. Obviously, the optimal
ratio R depends on the instance. In terms of the average performance on
those four instances, DPIO has best performance when R is 0.4. Accord-
ing to the simulation results, the ratio R is set to 0.4 in the following
simulations.

To analyze the convergence behaviors of DPIO algorithm, we com-
pare the convergence process of DPIO algorithms with greedy accep-
tance strategy and Metropolis acceptance strategy. When Metropolis
acceptance strategy is used, we use three different list lengths, that is
50, 150, and 250. Figs. 3–6 are the convergence process of DPIO algo-
rithm on Pr1002, D2103, Fnl4461, and Pla7397 respectively. Those fig-
ures clearly show that: (1) Metropolis acceptance strategy is apparently
better than greedy acceptance strategy. If greedy acceptance strategy
is used, DPIO algorithm will converge quickly and lead to premature
convergence easily; (2) the convergence process of DPIO algorithm is
heavily controlled by parameter list length. The smaller the list length
is, the quicker DPIO algorithm converges. As a result, DPIO algorithm
with smaller list length will be more easily to fall into local minimum.
On the contrary, The bigger the list length is, the slower DPIO algo-
rithm converges. As a result, DPIO algorithm with bigger list length

may waste more time on accepting worse solution. A suitable list length
is important for DPIO algorithm to have good performance.

4.2. Analysis of map and compass operator

In the specific implementation of map and compass operator, we
may have following two main kinds of alternatives: (1) considering the

Fig. 2. Performance comparison of DPIO algorithms with different first stage
ratio R.

139

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

Fig. 3. Convergence process on Pr1002 instance.

Fig. 4. Convergence process on D2103 instance.

exemplar P in (1), we may use global best position (global best-based
learning) or personal best position of randomly selected pigeon (com-
prehensive learning); (2) considering the next visiting city list nc in
(6), we may use Empty list, Full list, or Heuristic list. To observe which
combination has best performance, we implement six variants of DPIO
algorithm, DPIO with global best-based leaning and Empty list, DPIO
with global best-based learning and Full list, DPIO with global best-
based learning and Heuristic list, DPIO with comprehensive learning
and Empty list, DPIO with comprehensive learning and Full list, and
DPIO with comprehensive learning and Heuristic list. When Heuristic
list is used, the number of nearest cities in nc is equal to 15. Fig. 7 is
the simulation results. In Fig. 7, GL means global best-based leaning
and CL means comprehensive learning. Fig. 7 clearly shows that com-
prehensive learning has better effect than global best-based leaning.
When comprehensive learning is used, Heuristic list is apparently worse
than other two schemes. Among the 4 TSP instances, Full list has better
effect than Empty list on 3 instances. Based on those results, map and
compass operator with comprehensive learning and Full list has best
performance.

Fig. 5. Convergence process on Fnl4461 instance.

Fig. 6. Convergence process on Pla7397 instance.

4.3. Analysis of landmark operator

Similarly, in the specific implementation of landmark operator, we
may have following two main kinds of alternatives: (1) considering the
exemplar pj in (1), we may use mode edge (mode-based learning) or
a randomly selected edge (cooperative learning) from the set of edges
{xi,j, i ∈ (1,2,…,M)}; (2) considering the next visiting city list nc in
(6), we may use Empty list, Full list, or Heuristic list. To observe which
combination has best performance, we implement six variants of DPIO
algorithm, DPIO with mode-based learning and Empty list, DPIO with
mode-based learning and Full list, DPIO with mode-based learning and
Heuristic list, DPIO with cooperative learning and Empty list, DPIO with
cooperative learning and Full list, and DPIO with cooperative learning
and Heuristic list. When Heuristic list is used, the number of nearest
cities in nc is equal to 15. Fig. 8 is the simulation results. In Fig. 8, ML
means mode-based learning and CL means cooperative learning. Fig. 8
clearly shows that, no matter whether mode-based leaning or coopera-
tive learning is used, Heuristic list significantly outperforms Empty list
and Full list. When Heuristic list is used, cooperative learning outper-
forms mode-based learning on 3 TSP instances. Based on those results,

140

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

Fig. 7. Performance comparison of DPIO algorithms with different map and
compass operator.

Fig. 8. Performance comparison of DPIO algorithms with different landmark
operator.

landmark operator with cooperative learning and Heuristic list has best
performance.

5. Comparative experiments

In order to observe the performance of DPIO algorithm, DPIO algo-
rithm was tested on 33 large-scale TSP instances from TSPLIB with city
number from 1000 to 85900. In order to observe the competitiveness of
DPIO algorithm, DPIO algorithm was compared with the state-of-the-
art meta-heuristics which were published in recent two years and were
tested on more than 10 large-scale TSP instances from TSPLIB. In all
the following experiments, the length of temperature list L is 150, the
first stage ratio R is 0.4, and the maximum generation is 1000. Like in
HDABC [16] and D-CLPSO [9], a suitable population size is selected
for each instance such that DPIO algorithm can have good robustness
with reasonable run-time. The specific population size M is set accord-
ing to (11). Each instance was independently run 25 times. Percentage

error of average solution (PEav) is used to compare the performance of
different algorithms. Wilcoxon signed ranks test with 0.05 significant
level is used to compare the PEav of DPIO with compared algorithms.
The following experiments were run on an Intel Core i5-3470 CPU, with
3.2 GHz and a RAM of 4 GB. Java was used as the programming lan-
guage. We are not able to obtain all the source codes of the compared
algorithms. Except for those being explicitly explained, we obtained
the simulation results of those algorithms from their original literature
directly. As a result, the comparison was performed on different sets of
instances and those simulation experiments of the compared algorithms
were tested on different platforms.

M =

⎧⎪⎪⎨⎪⎪⎩

30, else if n < 2000
20, else if n < 4000
10, else if n < 50000
6, otherwise

(11)

where n is the city number of TSP instance.
DPIO algorithm is compared with SOS-SA [19], HDABC [16], and

D-CLPSO [9] on 17 benchmark instances with float distance. The SOS-
SA was encoded with Matlab R2014b and run on a 2.83 GHz CPU
Desktop with 2 GB RAM. Table 1 is the simulation results where the
best result is highlighted in bold. In Table 1, the run-time of SOS-
SA algorithm has been normalized according to the frequency of the
CPU used by DPIO algorithm. The average PEav of SOS-SA, HDABC,
D-CLPSO, and DPIO are 1.896, 1.255, 1.204, and 1.006 respectively.
Among the 17 instances, DPIO obtains best PEav on 12 instances,
SOS-SA obtains best PEav on 3 instances, and HDABC obtains best
PEav on 2 instances. Wilcoxon signed ranks test is used to compare
the PEav of DPIO with SOS-SA, HDABC, D-CLPSO. For DPIO and
SOS-SA, the computed R+, R−, and p-value are 120, 16, and 0.004
respectively. For DPIO and HDABC, the computed R+, R−, and p-
value are 120, 16, and 0.004 respectively. For DPIO and D-CLPSO,
the computed R+, R−, and p-value are 119, 17, and 0.005 respec-
tively. It means DPIO is significantly better than SOS-SA, HDABC,
and D-CLPSO. The superiority of DPIO over HDABC and D-CLPSO
can be explained as follows. Compared with HDABC, DPIO, which
uses comprehensive learning strategy in first stage, can have better
exploitation ability. Compared with D-CLPSO, DPIO, which uses full
list in the first stage and uses randomly selected pigeon as exemplar
in the second stage, can have better exploration ability. As a result,
DPIO can obtain better balance between exploration and exploita-
tion.

DPIO algorithm is compared with ESACO [2], MAS [3], and a self-
organizing map neural network (SOM) [28] on benchmark instances
with integer distance. The ESACO algorithm was encoded with C++
language and run on an Intel CPU 2.0 GHz with 1.0G RAM. The ESACO
algorithm has 10 ants and stops after 300 itertions, during which the
2-opt local search was used to improve solution constructed by each
ant. The MAS algorithm was encoded with C++ language and run on
an Intel Xeon E5440 CPU 2.83 GHz with 32 GB of RAM. The MAS
algorithm stops after the evaluation of n ∗ 5000 feasible tours, during
which the 3-Opt local search algorithm was executed n ∗ 50 times.
SOM was run on an AMD Athlon 2.0 GHz. Table 2 is the simula-
tion results where best result is highlighted in bold. The run-times of
ESACO, MAS, and SOM have been normalized according to the fre-
quency of the CPU used by DPIO algorithm. Wilcoxon signed ranks
test is used to compare the PEav of DPIO with ESACO, MAS and
SOM.

DPIO algorithm is compared with ESACO [2] on 11 benchmark
instances. The average PEav of DPIO and ESACO are 0.993 and 0.700
respectively. The average run time of DPIO and ESACO are 216.7s
and 253.3s respectively. DPIO obtains better PEav on 4 instances and
ESACO obtains better PEav on 7 instances. For DPIO and ESACO, the
computed R+, R−, and p-value are 43, 12, and 0.06 respectively. It
means there is no significant difference between ESACO and DPIO. It

141

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

Table 1
Compare DPIO with SOS-SA, DHABC, and D-CLPSO on 17 benchmark instances with float distance.

No. Instance Optimal SOS-SA HDABC D-CLPSO DPIO

PEav Time PEav PEav PEav Time

1 Pr1002 259045 1.06 11.33 0.71 0.8 0.533 14.3
2 Pcb1173 56892 1.19 7.72 0.77 0.89 0.617 17.8
3 D1291 50801 0.96 10.68 1.64 1.33 1.296 19.4
4 Rl1323 270199 0.56 9.75 0.5 0.42 0.387 22.2
5 Fl1400 20127 0.52 13.04 1.29 1.19 1.069 24.6
6 D1655 62128 3.19 14.32 1.28 1.42 1.031 27.5
7 Vm1748 336556 0.05 16.16 0.72 0.65 0.464 34.3
8 U2319 234256 0.46 16.02 0.26 0.4 0.812 34.2
9 Pcb3038 137694 1.46 22.7 1.03 1.08 0.719 43.5
10 Fnl4461 182566 1.63 28.95 1.3 1.37 1.092 44.2
11 Rl5934 556045 1.83 44.21 1.79 1.23 1.049 48.7
12 Pla7397 23260728 2.32 87.31 1.47 1.55 1.481 110.5
13 Usa13509 19982859 7.09 276.91 1.57 1.46 1.174 271.7
14 Brd14051 468385 1.8 328.00 1.45 1.46 1.151 304.6
15 D18512 645238 2.2 532.26 1.51 1.48 1.143 495
16 Pla33810 66048945 3.07 1680.3 1.81 2.1 1.721 1260.7
17 Pla85900 142382641 2.84 6714.0 2.23 1.64 1.371 5100.3

Average 1.896 577.28 1.255 1.204 1.006 463.15

Table 2
Compare DPIO with ESACO, MAS and SOM on 33 benchmark instances with integer distance.

No. Instance Optimal ESACO MAS SOM DPIO

PEav Time PEav Time PEav Time PEav Time

1 Dsj1000 18659688 – – 1.928 139.21 6.46 38.32 0.388 16.6
2 Pr1002 259045 0.179 22.39 0.062 158.21 4.78 34.85 0.51 14.1
3 U1060 224094 – – 0.554 170.14 5.12 42.46 0.374 15.3
4 Vm1084 239297 – – 0.657 146.35 5.86 42.83 0.327 17.4
5 Pcb1173 56892 – – 0.242 179.29 7.5 44.08 0.392 17.8
6 D1291 50801 – – 0.679 296.67 9.66 50.99 0.668 19.3
7 Rl1304 252948 – – 0.047 187.9 10 49.15 0.313 21.5
8 Rl1323 270199 – – 0.52 149.88 9.45 51.58 0.408 22
9 Nrw1379 56638 – – 1.234 200.86 4.61 50.26 0.519 23.2
10 Fl1400 20127 – – 1.019 175.78 4.32 146.59 0.419 24.5
11 U1432 152970 – – 0.335 263.17 5.02 60.49 0.388 23.9
12 Fl1577 22249 0.197 29.03 0.358 344.58 17.46 67.21 0.178 25.3
13 D1655 62128 – – 0.356 236.61 9.6 62.13 0.369 27.2
14 Vm1748 336556 – – 0.647 286.03 6.68 83.04 0.454 33.8
15 U1817 57201 – – 1.304 326.94 9.68 78.14 0.561 30.3
16 Rl1889 316536 – – 0.154 241.81 9.54 80.64 0.688 36.6
17 D2103 80450 – – 0.514 286.63 19.15 82.81 0.145 23.8
18 U2152 64253 – – 0.799 500.88 10.43 90.35 0.838 25.9
19 U2319 234256 – – 0.381 336.51 1.72 119.61 0.838 34.1
20 Pr2392 378032 – – 0.319 377.95 7.04 100.96 0.612 29.7
21 Pcb3038 137694 – – – – 7.88 122.04 0.624 43.7
22 Fl3795 28772 0.388 74.58 – – 16.13 243.26 1.52 67.3
23 Fnl4461 182566 0.482 120.39 – – 5.62 206.4 0.961 44.1
24 Rl5915 565530 0.602 135.58 – – 12.94 290.99 1.005 63.1
25 Rl5934 556045 – – 0.257 – 13.02 298.97 1.041 68.7
26 Pla7397 23260728 0.553 133.71 2.099 – 10.19 426.44 1.441 113.6
27 Rl11849 923288 0.764 359.88 4.724 – 11.49 771.38 1.062 299.4
28 Usa13509 19982859 1.062 571.38 4.675 – 7.62 987.06 1.168 318.3
29 Brd14051 469388 1.217 426.56 – – 6.18 912.13 1.051 347.7
30 D15112 1573084 1.03 485.46 4.049 – 5.95 1126.5 0.984 522.1
31 D18512 645244 1.227 427.78 – – 6 1302.5 1.049 569.2
32 Pla33810 66050535 – – – – 13.23 2992.88 1.726 1385.1
33 Pla85900 142383704 – – – – 10.94 15646.25 1.378 5279.1

Average 0.700 253.3 1.117 250.3 8.826 809.2 0.739 291.0

is worth noting that DPIO obtained better results on the three largest
instances. It means DPIO has better scalability than ESACO.

DPIO algorithm is compared with MAS [3] on 25 benchmark
instances. The average PEav of DPIO and MAS are 0.603 and 1.117
respectively. The average run time of DPIO and MAS are 24.1s and
250.3s respectively. DPIO obtains better PEav on 15 instances and MAS
obtains better PEav on 10 instances. For DPIO and MAS, the computed

R+, R−, and p-value are 198, 102, and 0.1 respectively. Although there
is no significant difference between DPIO and MAS in terms of PEav, it
is worth noting that DPIO obtained those results with far less time than
MAS.

DPIO algorithm is compared with SOM [2] on 33 benchmark
instances. The average PEav of DPIO and SOM are 0.585 and 8.826
respectively. The average run time of DPIO and SOM are 291.0s and

142

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

Table 3
Compare DPIO algorithm with 10 algorithms published in recent years.

No. Algorithm T N Dims PEav Time PEav1 Time1 R+ R- p-value

1 GA-EAX I 33 [1000, 85900] 0.052 4961.9 0.739 291.0 513 15 2.10e-6
2 HBMO I 33 [1000, 85900] 0.076 251.4 0.739 291.0 528 0 5.40e-7
3 ASA-GS F 17 [1002, 85900] 3.317 1321.6 1.006 463.2 136 0 2.93e-4
3 MSA-IBS I 17 [1002, 85900] 1.412 580.3 0.853 491.9 125 11 1.93e-3
4 LBSA I 17 [1002, 85900] 1.467 577.9 0.853 491.9 135 1 3.52e-4
5 EHS I 17 [1002, 85900] 1.732 239.7 0.853 491.9 131 5 7.13e-4
7 AHSA-TS I 20 [1002, 18512] 1.402 431.8 0.666 91.7 186 4 1.63e-4
8 SSA I 12 [318, 33810] 1.083 145.5 0.521 159.0 66 0 2.22e-3
9 TSHACO I 12 [318, 33810] 3.871 – 0.521 159.0 66 0 2.22e-3
10 PCGA I 13 [318, 18512] 4.588 2345.8 0.577 151.6 78 0 1.47e-3

809.2s respectively. DPIO is better than SOM on all instances. For DPIO
and SOM, the computed R+, R−, and p-value are 528, 0, and 5.4e-7
respectively. It means DPIO is significantly better than SOM.

DPIO is also compared in brief with 10 meta-heuristics which have
been tested on TSP instances with more than 10000 cities. Those
meta-heuristics include GA using edge assembly crossover (GA-EAX)
[24], honey bees mating optimization (HBMO) [14], adaptive SA with
greedy search (ASA-GS) [32], multiagent SA with instance-based sam-
pling (MSA-IBS) [34], list-based SA (LBSA) [33], evolutionary harmony
search (EHS) [36], adaptive hybrid SA-tabu search (AHSA-TS) [30],
swarm SA (SSA) [35], two-stage hybrid swarm intelligence optimization
(TSHACO) [21], permutation-coded genetic algorithm (PCGA) [23].
Table 3 highlights the comparison of the DPIO algorithm with those
meta-heuristics. The column of T denotes the type of distance between
cities, where I and F represent integer and float respectively. The col-
umn of N denotes the number of total instances. The column of Dims
denotes the city numbers of the smallest and the biggest instances. The
column of PEav and the column of PEav1 denote the PEavs of the com-
pared algorithm and the DPIO algorithm respectively. The better one
is highlighted in bold in Table 3. The column of Time and the col-
umn of Time1 denote the run-times of the compared algorithm and the
DPIO algorithm respectively. Except for PCGA, which didn’t provide
the frequency of the CPU, the run-times of the compared algorithms
have been normalized according to the frequency of the CPU used
by the DPIO algorithm. Except for GA-EAX, the results of other algo-
rithms are directly obtained from corresponding papers. We obtained
the source code of GA-EAX from the author and ran it on the 33 large-
scale TSP instances from TSPLIB. To limit the run-time of GA-EAX to
a reasonable value, the population size is set to 100. Table 3 clearly
shows that GA-EAX and HBMO outperform other algorithms. Results
of Wilcoxon signed ranks test show that, except GA-EAX and HBMO,
DPIO algorithm is significantly better than the other 8 meta-heuristics.
We also use Wilcoxon signed ranks test to compare the performance
of GA-EAX and HBMO, the computed R+, R−, and p-value are 395,
133, and 0.04 respectively. It means GA-EAX is significantly better
than HBMO, but GA-EAX costs much run-time than HBMO on the three
largest TSP instances. Both the operators of GA-EAX and HBMO are
heavily enhanced by the characteristics of TSP instance, it means that
embedding the characteristics of TSP instance into operators is an effec-
tive way to improve the performance of meta-heuristics for solving TSP.

6. Conclusions

PIO algorithm is a novel SI algorithm which has been successfully
applied to many continuous optimization fields. Using the two features,
dividing of its search process and dividing of swarm in the second stage,
PIO algorithm can flexibly adjust its operators to keep good balance
between intensification and diversification. To keep those two good fea-
tures for discrete problem, this paper redesigns the basic operators of
PIO algorithm for TSP. Using those new basic operators, a DPIO algo-
rithm with Metropolis acceptance criterion is implemented for TSP.

In the map and compass operator of DPIO algorithm, comprehensive
learning and Full next visiting city list are combined to improve DPIO’s
exploration ability in the first stage. In the landmark operator of DPIO
algorithm, cooperative learning and heuristic information are combined
to enhance DPIO’s exploitation ability in the second stage. Further-
more, Metropolis acceptance criterion of SA algorithm is used to obtain
better balance between intensification and diversification. The perfor-
mance of DPIO algorithm was tested on the 33 large-scale TSP instances
from TSPLIB and was compared with state-of-the-art meta-heuristics
published in recent years. Simulation results confirm the effectiveness
and competitiveness of DPIO Algorithm. Although DPIO algorithm has
shown its effectiveness and competitiveness, some additional aspects
are worth of further study:

• One shortage of DPIO algorithm is that it has several parameters that
need fine-tuning, and those parameters are instance-dependent. One
future direction is to investigate how to use adaptive strategy to find
optimal parameters online.

• Another shortage of DPIO algorithm is the large run-time on large
TSP instances. Although DPIO algorithm is population-based, and it
is easy to implement iteration-level parallelism for population-based
metaheuristics, two characteristics of DPIO algorithm are worth
studying while exploring its parallelization. The first characteristic
is that the second stage of DPIO algorithm is partial serial because
different pigeons in unsuccessful group may follow the same pigeon
in successful group. The second characteristic is that the flying oper-
ator (1) is serial. To implement a parallel DPIO algorithm, we may
produce new solutions for all pigeons at the same time and define a
parallel version of flying operator as (12):

x = min(x ⊕ (p1 ⊖ x1),x ⊕ (p2 ⊖ x2),… ,x ⊕ (pn ⊖ xn)) (12)

It is worth investigating whether those strategies have good proper-
ties for parallelization while preserving the solution quality.

• DPIO algorithm needs centralized access to data, and thus it is
impractical for large-scale applications where the data is too large
to be stored on one single machine. In this new era of big data, there
are many such applications, such as subset selection [47] and mul-
tivariate discretization for big data [48] etc. An interesting research
direction is to study how to extend DPIO algorithm to leverage dis-
tributed environments for solving big data applications.

Conflicts of interest

The authors declare that there is no conflict of interests regarding
the publication of this manuscript.

Acknowledgement

The authors like to thank Yuichi Nagata for the source code of GA-
EAX algorithm. This work was supported by Nature Science Foundation
of Fujian Province of P. R. China (No. 2016J01280, No. 2019J01401)

143

Y. Zhong et al. Swarm and Evolutionary Computation 48 (2019) 134–144

and Special Fund for Scientific and Technological Innovation of Fujian
Agriculture and Forestry University of P. R. China (No. CXZX2016026,
No. CXZX2016031).

References

[1] H. Duan, P. Qiao, Pigeon-inspired optimization: a new swarm intelligence
optimizer for air robot path planning, Int. J. Intell. Comput. Cybern. 7 (1) (2014)
24–37.

[2] H. Ismkhan, Effective heuristics for ant colony optimization to handle large-scale
problems, Swarm Evol. Comput. 32 (2017) 140–149, https://doi.org/10.1016/j.
swevo.2016.06.006.

[3] Y. Yan, H.-s. Sohn, G. Reyes, A modified ant system to achieve better balance
between intensification and diversification for the traveling salesman problem,
Appl. Soft Comput. 60 (2017) 256–267.

[4] W. Yong, Hybrid max–min ant system with four vertices and three lines inequality
for traveling salesman problem, Soft Comput. 19 (3) (2015) 585–596.

[5] J.B. Escario, J.F. Jimenez, J.M. Giron-Sierra, Ant colony extended: experiments on
the travelling salesman problem, Expert Syst. Appl. 42 (1) (2015) 390–410,
https://doi.org/10.1016/j.eswa.2014.07.054.

[6] Z. Zhang, Z. Feng, Two-stage updating pheromone for invariant ant colony
optimization algorithm, Expert Syst. Appl. 39 (1) (2012) 706–712
0.1016/j.eswa.2011.07.062.

[7] J. Ning, Q. Zhang, C. Zhang, B. Zhang, A best-path-updating information-guided
ant colony optimization algorithm, Inf. Sci. 433 (2018) 142–162.

[8] W.-N. Chen, J. Zhang, H.S. Chung, W.-L. Zhong, W.-G. Wu, Y.-H. Shi, A novel
set-based particle swarm optimization method for discrete optimization problems,
IEEE Trans. Evol. Comput. 14 (2) (2010) 278–300, https://doi.org/10.1109/TEVC.
2009.2030331.

[9] Y. Zhong, J. Lin, L. Wang, H. Zhang, Discrete comprehensive learning particle
swarm optimization algorithm with metropolis acceptance criterion for traveling
salesman problem, Swarm Evol. Comput. 42 (2018) 77–88.

[10] A. Ouaarab, B. Ahiod, X.-S. Yang, Discrete cuckoo search algorithm for the
travelling salesman problem, Neural Comput. Appl. 24 (7–8) (2014) 1659–1669,
https://doi.org/10.1007/s00521-013-1402-2.

[11] Y. Zhou, X. Ouyang, J. Xie, A discrete cuckoo search algorithm for travelling
salesman problem, Int. J. Collab. Intell. 1 (1) (2014) 68–84, https://doi.org/10.
1504/IJCI.2014.064853.

[12] E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, R. Carballedo, An improved discrete
bat algorithm for symmetric and asymmetric traveling salesman problems, Eng.
Appl. Artif. Intell. 48 (2016) 59–71, https://doi.org/10.1016/j.engappai.2015.10.
006.

[13] Y. Saji, M.E. Riffi, A novel discrete bat algorithm for solving the travelling
salesman problem, Neural Comput. Appl. 27 (7) (2016) 1853–1866, https://doi.
org/10.1007/s00521-015-1978-9.

[14] Y. Marinakis, M. Marinaki, G. Dounias, Honey bees mating optimization algorithm
for the euclidean traveling salesman problem, Inf. Sci. 181 (20) (2011)
4684–4698, https://doi.org/10.1016/j.ins.2010.06.032.

[15] L.-P. Wong, M.Y.H. Low, C.S. Chong, Bee colony optimization with local search for
traveling salesman problem, Int. J. Artif. Intell. Tools 19 (03) (2010) 305–334,
https://doi.org/10.1142/S0218213010000200.

[16] Y. Zhong, J. Lin, L. Wang, H. Zhang, Hybrid discrete artificial bee colony
algorithm with threshold acceptance criterion for traveling salesman problem, Inf.
Sci. 421 (2017) 70–84.

[17] J.B. Odili, M.N. Mohmad Kahar, Solving the traveling salesman’s problem using
the african buffalo optimization, Comput. Intell. Neurosci. 2016 (2016) 3.

[18] A.E.-S. Ezugwu, A.O. Adewumi, Discrete symbiotic organisms search algorithm for
travelling salesman problem, Expert Syst. Appl. 87 (2017) 70–78.

[19] A.E.-S. Ezugwu, A.O. Adewumi, M.E. Frîncu, Simulated annealing based symbiotic
organisms search optimization algorithm for traveling salesman problem, Expert
Syst. Appl. 77 (2017) 189–210.

[20] S.-M. Chen, C.-Y. Chien, Solving the traveling salesman problem based on the
genetic simulated annealing ant colony system with particle swarm optimization
techniques, Expert Syst. Appl. 38 (12) (2011) 14439–14450, https://doi.org/10.
1016/j.eswa.2011.04.163.

[21] W. Deng, R. Chen, B. He, Y. Liu, L. Yin, J. Guo, A novel two-stage hybrid swarm
intelligence optimization algorithm and application, Soft Comput. 16 (10) (2012)
1707–1722, https://doi.org/10.1007/s00500-012-0855-z.

[22] J. Wang, O.K. Ersoy, M. He, F. Wang, Multi-offspring genetic algorithm and its
application to the traveling salesman problem, Appl. Soft Comput. 43 (2016)
415–423, https://doi.org/10.1016/j.asoc.2016.02.021.

[23] P.V. Paul, N. Moganarangan, S.S. Kumar, R. Raju, T. Vengattaraman, P.
Dhavachelvan, Performance analyses over population seeding techniques of the
permutation-coded genetic algorithm: an empirical study based on traveling
salesman problems, Appl. Soft Comput. 32 (2015) 383–402, https://doi.org/10.
1016/j.asoc.2015.03.038.

[24] Y. Nagata, S. Kobayashi, A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem, Inf. J. Comput. 25 (2) (2013)
346–363.

[25] L.T. Kóczy, P. Földesi, B. Tü\H{u}-Szabó, Enhanced discrete bacterial memetic
evolutionary algorithm-an efficacious metaheuristic for the traveling salesman
optimization, Inf. Sci. 460 (2018) 389–400.

[26] Z. Xu, Y. Wang, S. Li, Y. Liu, Y. Todo, S. Gao, Immune algorithm combined with
estimation of distribution for traveling salesman problem, IEEJ Trans. Electr.
Electron. Eng. 11 (S1) (2016) S142–S154, https://doi.org/10.1002/tee.22247.

[27] Y. Zhou, Q. Luo, H. Chen, A. He, J. Wu, A discrete invasive weed optimization
algorithm for solving traveling salesman problem, Neurocomputing 151 (2015)
1227–1236, https://doi.org/10.1016/j.neucom.2014.01.078.

[28] H. Wang, N. Zhang, J.-C. Créput, A massively parallel neural network approach to
large-scale euclidean traveling salesman problems, Neurocomputing 240 (2017)
137–151.

[29] S. Hore, A. Chatterjee, A. Dewanji, Improving variable neighborhood search to
solve the traveling salesman problem, Appl. Soft Comput. 68 (2018) 83–91.

[30] Y. Lin, Z. Bian, X. Liu, Developing a dynamic neighborhood structure for an
adaptive hybrid simulated annealing–tabu search algorithm to solve the
symmetrical traveling salesman problem, Appl. Soft Comput. 49 (2016) 937–952,
https://doi.org/10.1016/j.asoc.2016.08.036.

[31] H. Zhang, J. Zhou, Dynamic multiscale region search algorithm using vitality
selection for traveling salesman problem, Expert Syst. Appl. 60 (2016) 81–95,
https://doi.org/10.1016/j.eswa.2016.05.007.

[32] X. Geng, Z. Chen, W. Yang, D. Shi, K. Zhao, Solving the traveling salesman problem
based on an adaptive simulated annealing algorithm with greedy search, Appl. Soft
Comput. 11 (4) (2011) 3680–3689, https://doi.org/10.1016/j.asoc.2011.01.039.

[33] S.-h. Zhan, J. Lin, Z.-j. Zhang, Y.-w. Zhong, List-based simulated annealing
algorithm for traveling salesman problem, Comput. Intell. Neurosci. 2016 (2016)
8.

[34] C. Wang, M. Lin, Y. Zhong, H. Zhang, Solving travelling salesman problem using
multiagent simulated annealing algorithm with instance-based sampling, Int. J.
Comput. Sci. Math. 6 (4) (2015) 336–353, https://doi.org/10.1504/IJCSM.2015.
071818.

[35] C. Wang, M. Lin, Y. Zhong, H. Zhang, Swarm simulated annealing algorithm with
knowledge-based sampling for travelling salesman problem, Int. J. Intell. Syst.
Technol. Appl. 15 (1) (2016) 74–94.

[36] C. Wang, J. Lin, M. Lin, Y. Zhong, Evolutionary harmony search algorithm with
metropolis acceptance criterion for travelling salesman problem, Int. J. Wirel.
Mob. Comput. 10 (2) (2016) 166–173.

[37] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE Trans.
Evol. Comput. 10 (3) (2006) 281–295, https://doi.org/10.1109/TEVC.2005.
857610.

[38] M.N. Ab Wahab, S. Nefti-Meziani, A. Atyabi, A comprehensive review of swarm
optimization algorithms, PLoS One 10 (5) (2015) e0122827https://doi.org/10.
1371/journal.pone.0122827.

[39] D. Zhang, H. Duan, Y. Yang, Active disturbance rejection control for small
unmanned helicopters via levy flight-based pigeon-inspired optimization, Aircraft
Eng. Aero. Technol. 89 (6) (2017) 946–952.

[40] Y. Sun, N. Xian, H. Duan, Linear-quadratic regulator controller design for
quadrotor based on pigeon-inspired optimization, Aircraft Eng. Aero. Technol. 88
(6) (2016) 761–770.

[41] J. Pei, Y. Su, D. Zhang, Fuzzy energy management strategy for parallel hev based
on pigeon-inspired optimization algorithm, Sci. China Technol. Sci. 60 (3) (2017)
425–433.

[42] X. Lei, Y. Ding, F.-X. Wu, Detecting protein complexes from dpins by density based
clustering with pigeon-inspired optimization algorithm, Sci. China Inf. Sci. 59 (7)
(2016) 070103.

[43] B. Zhang, H. Duan, Three-dimensional path planning for uninhabited combat
aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic
environment, IEEE ACM Trans. Comput. Biol. Bioinform 14 (1) (2017) 97–107.

[44] S. Yu, Y. Xu, P. Jiang, F. Wu, H. Xu, Node self-deployment algorithm based on
pigeon swarm optimization for underwater wireless sensor networks, Sensors 17
(4) (2017) 674.

[45] R. Dou, H. Duan, Lévy flight based pigeon-inspired optimization for control
parameters optimization in automatic carrier landing system, Aero. Sci. Technol.
61 (2017) 11–20.

[46] Q. Xue, H. Duan, Robust attitude control for reusable launch vehicles based on
fractional calculus and pigeon-inspired optimization, IEEE/CAA J. Autom. Sin. 4
(1) (2017) 89–97.

[47] C. Qian, G. Li, C. Feng, K. Tang, Distributed pareto optimization for subset
selection, in: International Joint Conference on Artificial Intelligence, 2018, pp.
1492–1498.

[48] S. Ramirezgallego, S. Garcia, J.M. Benitez, F. Herrera, A distributed evolutionary
multivariate discretizer for big data processing on Apache spark, Swarm Evol.
Comput. 38 (2018) 240–250.

144

http://refhub.elsevier.com/S2210-6502(18)30743-0/sref1
https://doi.org/10.1016/j.swevo.2016.06.006
https://doi.org/10.1016/j.swevo.2016.06.006
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref3
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref4
https://doi.org/10.1016/j.eswa.2014.07.054
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref6
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref7
https://doi.org/10.1109/TEVC.2009.2030331
https://doi.org/10.1109/TEVC.2009.2030331
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref9
https://doi.org/10.1007/s00521-013-1402-2
https://doi.org/10.1504/IJCI.2014.064853
https://doi.org/10.1504/IJCI.2014.064853
https://doi.org/10.1016/j.engappai.2015.10.006
https://doi.org/10.1016/j.engappai.2015.10.006
https://doi.org/10.1007/s00521-015-1978-9
https://doi.org/10.1007/s00521-015-1978-9
https://doi.org/10.1016/j.ins.2010.06.032
https://doi.org/10.1142/S0218213010000200
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref16
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref17
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref18
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref19
https://doi.org/10.1016/j.eswa.2011.04.163
https://doi.org/10.1016/j.eswa.2011.04.163
https://doi.org/10.1007/s00500-012-0855-z
https://doi.org/10.1016/j.asoc.2016.02.021
https://doi.org/10.1016/j.asoc.2015.03.038
https://doi.org/10.1016/j.asoc.2015.03.038
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref24
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref25
https://doi.org/10.1002/tee.22247
https://doi.org/10.1016/j.neucom.2014.01.078
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref28
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref29
https://doi.org/10.1016/j.asoc.2016.08.036
https://doi.org/10.1016/j.eswa.2016.05.007
https://doi.org/10.1016/j.asoc.2011.01.039
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref33
https://doi.org/10.1504/IJCSM.2015.071818
https://doi.org/10.1504/IJCSM.2015.071818
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref35
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref36
https://doi.org/10.1109/TEVC.2005.857610
https://doi.org/10.1109/TEVC.2005.857610
https://doi.org/10.1371/journal.pone.0122827
https://doi.org/10.1371/journal.pone.0122827
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref39
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref40
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref41
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref42
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref43
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref44
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref45
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref46
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref47
http://refhub.elsevier.com/S2210-6502(18)30743-0/sref48

	Discrete pigeon-inspired optimization algorithm with Metropolis acceptance criterion for large-scale traveling salesman problem
	1. Introduction
	2. Related work
	2.1. Pigeon-inspired optimization algorithm
	2.2. Travelings salesman problem
	2.3. Swarm intelligence algorithms for large-scale TSP

	3. Discrete pigeon-inspired optimization algorithm
	3.1. Basic operators of DPIO algorithm
	3.2. Metropolis acceptance strategy
	3.3. Implementation of DPIO algorithm

	4. Behaviours analysis
	4.1. Parameter tuning and convergence analysis
	4.2. Analysis of map and compass operator
	4.3. Analysis of landmark operator

	5. Comparative experiments
	6. Conclusions
	Conflicts of interest
	Acknowledgement
	References

