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Limit-Cycle-Based Mutant Multiobjective
Pigeon-Inspired Optimization

Haibin Duan

Abstract—This article presents a limit-cycle-based mutant
multiobjective pigeon-inspired optimization (PIO). In this algo-
rithm, the limit-cycle-based mechanism is devised to consider
the factors that affect the flight of pigeons to simplify the
multiobjective PIO algorithm. The mutant mechanism is incorpo-
rated to strengthen the exploration capability in the evolutionary
process. Additionally, the application of the dual repository
makes the nondominated solutions stored and selected to guide
the flight of pigeons. Attributed to the limit-cycle-based mutant
mechanisms, this algorithm not only obtains the faster conver-
gence speed and higher accuracy but also improves its population
diversity. To confirm the universal application of this algorithm,
theoretical analysis of the convergence is discussed in this article.
Finally, comparative experiments of our proposed algorithm and
other five multiobjective methods are conducted to verify the
accuracy, efficiency, and convergence stability of the proposed
algorithm.

Index Terms—Limit-cycle-based mechanism, multiobjective
pigeon-inspired optimization (PI0), mutant mechanism, theoret-
ical analysis.

I. INTRODUCTION

PTIMIZATION problems are presented to solve real-

life decisions and planning situations. However, there

is always more than one objective to be optimized simul-

taneously in many scientific and engineering applications.

These problems are termed as multiobjective optimization
problems (MOPs).

Due to the conflicting property of multiple objectives, a sin-

gle solution which can find the optimum for all the objectives
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at the same time does not exist. The improvement of one
objective function may result in the deterioration of others [1].
Thus, MOPs are aimed to find a set of tradeoff solutions
(Pareto-optimal solutions) [2], known as Pareto set (PS) in
the decision space and Pareto front (PF) in the objective
space. The obtained Pareto-optimal solutions can be applied
to various cases in real life.

Since the number of Pareto-optimal solutions is usually far
more than the desired number, lots of multiobjective algo-
rithms are represented to obtain a representative and diverse
set of solutions for selection [3], [4]. Due to the gener-
ality and population-based searching nature, multiobjective
evolutionary algorithms (MOEAs) could find the approxi-
mate set of Pareto-optimal solutions effectively and efficiently
in a single run [5], [6]. Therefore, MOEAs have experi-
enced great development [7] and played the major role in
addressing complicate MOPs in the EA field. The most excel-
lent representative MOEAs include the nondominated sorting
genetic algorithm (NSGA) [8], MOEA based on decompo-
sition (MOEA/D) [9], the strength Pareto evolutionary algo-
rithm (SPEA) [10], and their variants, such as NSGA-II [11],
NSGA-III [12], [13], MOEA/D-KF [14], SPEA-II [15], and
other algorithms.

Many multiobjective evolutionary optimization algorithms
generally have difficulties in solving large-scale multiobjective
problems (LSMOPs). As the dimension of decision variables
increases, the decision space usually exponentially grows and
the general characteristics of the problem become more com-
plicated which result in the premature convergence to local
optima of MOEAs due to the degradation of population diver-
sity in early stages of the optimization process [16]. Thus,
nature-inspired heuristic algorithms, including evolutionary
algorithms (EAs) [11], [17], artificial immune algorithms [18],
[19], particle swarm optimization algorithms [20], [21], and
pigeon-inspired optimization (PIO) algorithms [22] have been
developed to tackle MOPs. Nevertheless, on the one hand,
the performance of EAs always severely degrades when solv-
ing large-scale optimization problems, like DE algorithm [16].
For another, various strategies utilized in the improvement of
MOEAs could bring the disadvantages of heavy calculation
burden [23].

PIO is a newly proposed bio-inspired swarm intelligence
algorithm, which was invented by Duan and Qiao [22] and
successfully applied for solving real-world problems in vari-
ous fields [24]-[26]. The basic algorithm of PIO is inspired
by the behavior of the homing pigeons. In the evolutionary
process of the algorithm, the pigeons could employ different
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tools to guide the route during different periods. Many vari-
ants of PIO algorithm have been proposed to solve SOPs,
and which are proven competitive in the quick speed of
convergence and superior optimal solutions. The excellent
performance of PIO in solving SOPs demonstrated its effi-
ciency and effectiveness of searching the optimal solutions in
complicate problems.

However, to improve the performance of the multiobjective
PIO algorithm (MOPIO), it is necessary to design the corre-
sponding mechanisms based on the topologies of its Pareto
optimal solutions. There are two key problems to be solved.
First, the relationship between the global exploration and local
exploitation of the algorithm should be balanced, which is
considered by almost all algorithms. Second, the MOPIO algo-
rithm cannot follow the original calculation mechanism of
the central pigeon in the PIO algorithm which needs to be
considered.

Therefore, this article mainly focuses on these two respects
and aims to extend PIO for tackling MOPs with high dimen-
sions. We propose a limit-cycle-based mutant multiobjective
PIO (CMMOPIO) algorithm. The major contributions of this
article are listed as follows.

1) The limit cycle phenomenon has been applied in plenty
of control fields with good control effect due to its
dynamic stability. The limit-cycle-based mechanism is
carried out to balance the global exploration ability and
local exploitation ability by controlling the two param-
eters that affect the flight of pigeons in this article.
Under the limit-cycle-based mechanism, the evolution-
ary trend of two parameters is consistent with the flight
mechanism of the flock of pigeons.

2) To migrate the landmark operator from the PIO algo-
rithm to the MOPIO algorithm, the mutant mechanism
makes effort to select the central pigeon of the popula-
tion from the nondominated solutions, so that it is not
possible for the population to deviate from the true PF.

3) The superiority of the proposed algorithm compared
with other existing MOPs is discussed through various
experiments in this article. What is more, the conver-
gence of the algorithm has been theoretically demon-
strated, which proves the universality of this algorithm
in solving MOPs.

The remainder of this article is organized as follows.
Section II gives the related background of the proposed algo-
rithm, including the mathematical description of MOPs and the
introduction of the basic PIO algorithm. Section III gives the
basic idea of the CMMOPIO algorithm, which includes limit-
cycle-based mechanism, mutant mechanism, and dual reposi-
tory. Section IV discusses the convergence of CMMOPIO and
gives the convergence conditions. The results of comparative
experiments are presented in Section V. Finally, our concluding
remarks are given in Section VI.

II. BACKGROUND
A. Multiobjective Optimization Problems

Without loss of generality, MOPs involve multiple minimiz-
ing or maximizing conflicting objective functions. Supposing

949
m objective functions, an MOP can be stated as

min /max F(x) = [f1 x), ), ... ,fm(x)]

Subject to x = [x1,Xx2,...,x,] € R (1)

where x = [x1, x2, ..., x;] is the decision variable vector, and
Q2 is the decision variable space, F : 2 — R™, F is the vector
of m objective functions. Due to the conflict between the objec-
tives, it is impossible to find one solution that can optimize
the whole set of functions simultaneously. Thus, the definition
of Pareto optimality is adopted to find out the best tradeoffs
among all the functions.

Definition 1 (Pareto Dominance): A decision vector y =
(y1,¥2,...,yx) is said to strictly dominate another decision
vector z = (z1, 22, - . - , Zk) in minimization MOP, denoted by
y < z. If and only if y is partially less than z

Vie{l,2,...,k}, y;,<ziAndie{l,2,...,k} :y; <z (2)

Definition 2 (Pareto Optimality): A point x* € Q is Pareto
optimal if and only if for every x € Q

—Ix € Q : x > x*. 3)

Definition 3 (Pareto Optimal Set): For a given MOP f(x),
the Pareto optimal set P* is defined as

P* =[x e Q- € Q, f(¥) < f¥)}. 4)

Definition 4 (Pareto-Optimal Front): For a given MOP f(x)
and Pareto optimal set P*, the PF (PF*) is defined as

PF* = {y=f= (i), (), ....fi)x e P*}. (5

In general, it is impossible to find the analytic expressions
of the line or surface containing the points. Thus, the general
procedure to generate the PF is to calculate the feasible points
x and the corresponding f(x). When sufficient quantities are
available, it is possible to determine the nondominated points
and generate the PF.

B. Basic Pigeon-Inspired Optimization

PIO is a population-based bio-inspired swarm intelligence
optimization algorithm, in which the individual is referred as
a pigeon. In this algorithm, two operators (map and com-
pass operator, landmark operator) are employed to guide the
pigeons to find the best positions, the solutions of the problem
to be solved.

1) Map and Compass Operator: For the optimization
problem, each pigeon has a position, which is defined as

., Xip] (6)

where D is the dimension of the function to be solved, i =
1,2,..., N, is the population of the pigeons. Each pigeon has
the velocity, which is stated as

X; = [xi1, xi2, .-

. V,‘D]. (7)

First, randomly initialize the pigeon’s position and veloc-
ity within the searching space. Then, with the number of
the iterations increasing, the V;j of the next iteration can be
updated by

Vi) = Vit — 1) - e ® + rand - (Xgpest — Xi(t — 1)) (8)

Vi=[vit, vz, ..
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where t is the current number of the iteration, ¢t =
1,2, ..., Timax> T1max 1S the maximum number of the itera-
tions in which the map and compass operator works. Map and
compass operator R is the weight factor used to control the
speed of the iteration on the next iteration, which is the random
number value uniformly distributed between 0 and 1. Xgpes is
the global optimal solution during the current iterations. Then
the next X; is calculated as follows:

Xi(n) = Xi(r = 1) + V(). 9

The first evolutionary procedure utilizing the map and com-
pass operator will be stopped until the iteration equaling to
T max-

2) Landmark Operator: As the pigeons get close to the des-
tination, they gradually reach home depending on the nearby
landmarks. In the landmark operator, the pigeons that are not
familiar with the landmarks, will fly away from the correct
direction and be discarded. Thus, the number of the pigeons
is decreased by half after each iteration. The rest pigeons will
utilize the landmark operator as navigation guidance, which is
defined as Xcenter- Hence, the position at the next iteration can
be updated by

X;(®) =X;(t— 1) +rand - Keenter(t — 1) — X;(r — 1))

(10)
N

1 X;(1) - fitness(X; (7))

Xeener (1) = 211 N ’ (11)
N, - > i fitness(X; (1))
N,(t—1

Ny (1) = ceil(p(T)) (12)
where ¢ is the current number of the iteration, t =
1,2, ..., Tomax, T2max 1S the maximum number of the iter-

ations in which the landmark operator works. The fitness is
the function to be optimized

fitness(X;(¥)) = fmax(X;(#)), for maximum problems
1

Smin(Xi () + ¢

13)

fitness(X; (7)) = , for minimum problems.

(14)

After each iteration, the pigeon’s position will be close to
the center position until the iterations reach 75 max.

III. PROPOSED ALGORITHM
A. Main Algorithm

The procedure of CMMOPIO algorithm is presented in
Algorithm 1.

B. Limit-Cycle-Based Mechanism

The basic PIO algorithm employs two independent useful
cycles to mimic the characteristic of the homing pigeons. The
map and compass operator will merge during the later period
as the landmark operator works for the navigation of homing
pigeons. In our proposed algorithm, these two operators are
combined in one process under the limit-cycle-based mech-
anism. Considered a limit cycle, it has the property that all
variables in the vicinity of the limit cycle ultimately tend

Algorithm 1 CMMOPIO Algorithm Procedure

1: For i =1 to Np do

2: Initialize the position X and velocity V of each pigeon
3: Evaluate the function values F of each pigeon

4: End for

5: Get non-dominated pigeon individuals for i =1,..., Np
6

: Create D-dimension hypercubes and put the pigeons into the corresponding

positions

7: Initialize the best position of each pigeon Xgpest = X(1)

8: For t = 1 to Tmax

9: Calculate the weight coefficients k; and kp with the limit-cycle-based
mechanism

10: Calculate the Xéemer with the mutant mechanism.

11: Update the velocity V() and position X(#):

1 _
VI = ROV by (Xt = XE) K - (Xbenier = X)) (15)
(16)

12: Border check: If the variables go beyond their upper boundary, then make
it the maximum boundary value. Vice versa.

13: Evaluate each of the pigeons in population and update the best position

of each pigeon

14: Update the secondary repository

15: End for

XE+1 — Xf+Vf+l

toward the limit cycle as time goes into infinity. Following
this idea, we utilize the limit-cycle-based mechanism to update
two operators in (15). k; and k» are defined by follows:

kH_-l kt )
| = [ Iy } +Li (17)
2,i N
LA | K
Li=x |7 : 1,1] 18
l [ 1 Viti| |:kt2,i (19
2 2
vi=1- (ktl,i) — (k)" (19)

As two operators of PIO algorithm work in different peri-
ods during the flight of pigeons, the tendency of their weight
coefficients k| and k, needs to be corresponding to the pigeons
homing behavior. At the first period, the Xgpest Of pigeons
plays a major role in the flock, thus kj is usually initialized
as 1. At the second period, the effect of the Xgpese descends
and the effect of the X increases beyond that of the

center
X er- Thus, the coefficient of the X ko, 1s initially set

center’
to be 0 and gradually increases. The evolution of two param-
eters under the limit-cycle-based mechanism is shown in the
following Fig. 1.

As we can see from the two equations above, kj is bigger
than the k; at the beginning. As the number of ¢ increases, k;
gradually decreases and k; increases until k> is over kj. Thus,
the best position of the pigeon Xébest’i plays the leading role
at first and the X', guides the navigation later.

C. Mutant Mechanism

As referred in the part A, XL, is calculated based on the
mutant mechanism. In basic PIO algorithm, X!, ., is obtained
by the (11) utilizing the maximum or the minimum value of
the solutions. While there is no one solution superior to all
the others in solving multiobjective problems, it is important
to design a mutant mechanism to generate the X, ..

Due to the successful application of mutation operator in
MOEAs, our proposed algorithm employs the mutant mecha-

nism to improve the exploitation and applicability capability
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Fig. 1. Evolutionary curve of parameters k1 and k2.

Algorithm 2 Mutant Mechanism Procedure

1: Initialize m = 20, the upper and lower bound ub, Ib
2: select the non-dominated solution randomly XRrgp(j) in secondary
repository
if rand < 1/m
atk) =1
else
atky =0
end if
: calculate Ad, calculate Xf:emer,i
: calculate the new function value Fyey,
10: if Fjey dominates Foyy
11:  update XL o
12: end if

R A A

of solving multiobjective problems as the number of the
iteration increasing. X[, .. ; is generated based on the non-
dominated solutions. Then, the mutant mechanism is employed
to improve the chosen solution based on the step mutation
operator in (20) and (21). The chosen solutions are expanded
in D dimensions, respectively. While the solution with certain
dimension mutated could obtained the better function value,
then the Xéemer’i is updated. The mutant mechanism procedure
is introduced in Algorithm 2

Xéenter(ivj) = XRep(i) + Ad - (ub — Ib) (20)
_ a(k) _J0, rand < 1/m
ad = sum<7>a(k) - { 1, rand > 1/m @D

where k=0,1,2,...,m.

D. Dual Repository

There are two repositories in our proposed CMMOPIO algo-
rithm. One of the repositories is consisting of the pigeons’
positions of the current iteration, and the other one of the
repositories is used to keep the record of the nondominated
positions chosen from the evolutionary process. The secondary
repository is designed in [27], which is composed of the
archive controller and the grid.

These two components are introduced in the following.

1) The Archive Controller: The effect of the archive con-

troller is to decide whether the new updated solution (S)
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The primary The secondary The primary The secondary
repository repository repository repository
S1 S1 S2 S1 S1
Step 1 Step 2
The primary The secondary The primary The secondary
repository repository repository repository
| S2 s1 | S1 S3 S2 s1 sS4 S3
‘ N 1
S3 | S4 S3
Step 3 Step 4

Fig. 2. Steps of the archive controller.

should be saved in the archive or not. The process of
making the choice is as follows.

The nondominated solutions obtained in the evolutionary
process are compared with the individuals in the secondary
repository, which is empty at the beginning of the search.
If the secondary repository is empty, then the new nondom-
inated decision S1 is absorbed in (see step 1, in Fig. 2). If
the new decision S2 is dominated by the individual S1 within
the secondary repository, then the new solution S2 is removed
automatically (see step 2, in Fig. 2). While there are no individ-
uals in the secondary repository that dominate the new solution
S3, then the new solution is stored in the secondary repository
(see step 3, in Fig. 2). If the new solution S4 dominates the
solution S1 in the secondary repository, as well as not domi-
nated by other solutions in the secondary repository, then the
solution S4 is absorbed in the secondary repository and the
solution S1 is kicked out at the same time (see step 3, in
Fig. 2). When the number of the individuals in the secondary
repository reaches the maximum allowable capacity, then the
grid procedure is started.

2) The Grid Procedure: The effect of the grid procedure
is to distribute the large number of solutions in the
secondary repository in a uniform way.

To make the PFs distributed uniformly, a variation of the
adaptive grid proposed in [28] are applied. The basic prin-
ciple is to utilize the secondary repository to maintain the
solutions that are nondominated with respect to the individ-
uals in the primary repository. In the secondary repository,
the search space of the multiobjective problem is divided into
square grids as Fig. 3.

Principle 1: When the secondary repository has a full capac-
ity, if the new nondominated solution SO is stored in, then we
move the solution located in the dense regions out like S9 as
Fig. 4.

Principle 2: When the secondary repository has a full capac-
ity, if the new nondominated solution SO is located out of the
current space, then we recalculate the bounds of the grid and
remove the certain solutions as principle 1 as Fig. 5.
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IV. CONVERGENCE ANALYSIS

The convergence properties of the PIO algorithm have been
widely studied by researchers. However, the discussion of the
convergence of the MOPIO is quite scarce. In this section,
the convergence of the CMMOPIO algorithm is analyzed in
the search space to get the convergence conditions. This analy-
sis is based on the concept of Pareto optimality. To discuss the
convergence of the CMMOPIO algorithm, some assumptions
are needed as stated in the following.

Assumption 1: Xgpesr,i and Xeenger, defined in Section II, sat-
isfy the condition {Xgpest,iXcenter} € I', where I is the search
space, i =1,2,..., Np.

Assumption 2: There exists Pareto optimal set X* for X;(7),
i=1,2,...,Np.

Assumption 3: The parameters k; and kp, defined in
Section III-B, satisfy the condition that 0 < k; + k2 <
2. (14 e R,

Theorem 1: When Assumption 1-3 are satisfied, given k| >
0, k2 > 0, the pigeons’ position X} will convergence to Pareto
optimality X*.

Proof: Substituting (15) into (16), we obtain the following
nonhomogeneous recurrence relation:

Xl;+1 - (1 — k| — ko + efR(z+1)) X!
+ k1 Xgpeai T k2 Xoenter (22)

where i = 1,2,...,Np, and (22) can be expressed as the
matrix form

+1 +1
X! X!
X§ =¢@) Xf (23)
1 1
where the coefficient ¢ (¢) is
Il —ki—ky + e RUFD  _=RUED ky - thbest,i+k2 : Xéemer
o) = 1 0 0
0 0 1
(24)
Then, assume that e R0+D = , k + kh = K, the
characteristic polynomial of matrix ¢ () is obtained by (24):
I =K—r —r ki X;gbest,i + ko - Xéenter
o) — M = 1 —A 0
0 0 1—A
(25)
(1—x)[,\2—(1—1<+r)-x+r]=0 (26)
and the eigenvalues of ¢ (¢) are
1-K +/(1-K 2_4
)\1 = 1; )\2’3 = ( +r) \/; +r) r. (27)
Thus, the pigeon position can be stated as
Xi=yi-h+yay+ys-A (28)

where y1, y»2, and y3 are constants.

Obviously, the eigenvalues are affected by the parameter K
and r. The convergence condition of CMMOPIO algorithm is
max{ [Az] |A3|} < 1. That is,

A1—K+rn+JA—=—K+n2—4r
2

< 1. (29)

Based on Assumption 3 and (17), the parameters k; and k>

satisfy the following condition:

O0<r<l1

{O<K<2(l+r). (30)

Thus, the condition needed to obtain the conclusion is
discussed in the following cases.
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Case 1 (1 — K + r)2 — 4r < 0: In case 1, both of the
eigenvalues A, and A3 are complex numbers, thus

I
hal? = a5 = Z‘(l — K+ = —K+n2+4r|=r.
(31

In fact, max{ [A2] |A3] } < 1 requires only r < 1 in case 1.
Also, the conditions of case 1 requires —2/r +r+1 <K <
2/r+r+1, and r > 0. Therefore, the convergence conditions
of case 1 are

O<r<l1
—2Jr+r+1<K<2/r+r+1

Case 2 (I — K + r)? — 4r > 0: In case 2, both of the
eigenvalues A, and A3 are real numbers, thus the condition
of case 2 are equal to r > 0, and K < —2ﬁ+ r+1 or
K>2/r+r+1.

1) If K < =2/r+r+1, then max{ |A2| [A3]} < I requires

only

(32)

(I—=K+r)+/(1-K+r?—dr
2

IA2| = <1

(33)

Itleadsto 0 < K < —2/r+r+1,r<1.
2) If K >2/r+r+1, then max{ [A2] |A3|} < 1 requires

_ _ _ 2 _
Al = 1—K+7r) \/;1 K+r)?—4r -1 G4
That is
_ _ _ 2 _
(1—K+7r—y/(1—K+7 o 35)

2

It leads to 2/r +r+1 < K <2(1 +r), r < 1. Therefore,
the convergence conditions of case 2 are

O<r<l1
2Jr+r+1<K<2(1+7r).

Therefore, combining the two cases, (30) satisfies the
convergence conditions of CMMOPIO algorithm.

According to (28), the convergence of the pigeon position
can be calculated as

(36)

ﬂf& Xt =y. 37

When the ¢ — o in (22), the value of the pigeon position can
be calculated as

lim X = lim (k1 Xy, + K2 X’Cemer>/(k1 +h). (38)

—00

Suppose that Assumptions 1 and 2 are valid, one has

t—1 t t—1 t

ngest,i > ngest,i or ngest,i <> ngest,i (39)
t t t t

Xcenter < ngest,i or Xcenter <> ngest,i . (40)

For CMMOPIO algorithm, the pigeon’s best position Xgpest, i
will be further updated by the mutant mechanism which is
based on the nondominated solutions which are close to the
PFs. Thus

lim X/ = X*.

=00 gbest, i

(41)

953

Moreover, the best position Xceneer 1S mutated by the
pigeons’ positions chosen from the current nondominated set

Xgpest,i» i = 1,2, ..., Np. Thus, there exists
tgrgo Xeenter = X" (42)

Based on (41) and (42), (38) can be rewritten as
lim Xi = lim (kl X* k- X*)/(Iq + k) =X*. (43)
—00 —00
This proves Theorem 1 completely. |
Theorem 2: When Assumption 1-3 are satisfied, the

pigeons’ velocity Vi will convergence to 0.
Proof: According to (15), the velocity can be defined as

Vil ==K+ -Vit+r-Vi' =0 “4)

Then the characteristic polynomial of the coefficient matrix
is

[AZ—(I—K+r)-A+r]:0 (45)
and the eigenvalues of ¢ () are
(1—-K+rnE+JA-K+r?—4r
A5 = \/2 . (46)
Thus, the pigeon velocity can be stated as
Vi=yu My +ys- Ak 47

where y4 and ys5 are constants.
Suppose Assumption 1-3 are satisfied, based on the analysis

of Theorem 1, there exists
lim Vi =0.

(48)
11— 00

Based on the convergence analysis, conclusions can be

drawn that each pigeon in the population will converge to

the best position with the iteration increasing. |

V. EXPERIMENTAL WORK
A. Benchmark Functions

In order to verify the performance of our proposed
CMMOPIO algorithm, some benchmark functions taken from
specialized [29] are utilized. These benchmark problems are
all multiobjective problems with two or three functions with
maximum or minimum value.

B. Benchmark Functions Performance Measures

1) Generational Distance: The concept of the generational
distance (GD) was presented by Veldhuizen and Lamont [30]
as a way of testing how far the nondominated solutions found
so far are from those in the Pareto optimal set and is defined as

Y4
n

where 7 is the amount of the numbers in the set of the nondom-
inated solutions found so far, and d; is the Euclidean distance
between each of these and the nearest elements in the Pareto
optimal set. It is clear that these solutions are all contained in
the Pareto optimal set when the GD is equal to zero. Thus,
the values except zero will demonstrate the extend of how far
the solutions from the PF of the function problem.

GD = (49)
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TABLE I
PARAMETERS OF THE CMMOPIO ALGORITHM

TABLE II
BENCHMARK FUNCTIONS AND PARAMETERS

Description Symbol  Value
weight factor in the map and compass operator R 0.02
weight factor in the limit-cycle-based mechanism | 0.015
Population of the first repository N 100
Population of the second repository N 100

2) Spacing: The concept of the spacing (SP) is introduced
by Schott [31] which aims to measure the range variance of
neighboring elements in the nondominated solutions found so
far. It can be defined as

SP = (50)

1 =n
D d—di?
n—1 P

where d; = min(([f{®) — D + 4G — ADD. ij =
1,2,...,n, d is the average value of all the d;, and n is the
number of the nondominated solutions found so far. When the
value of SP is zero, it is indicated that all members in the PF
currently available are equidistantly spaced.

3) Inversed Generational Distance: The concept of
inversed generational distance (IGD) was proposed as a com-
prehensive index to evaluate the convergence performance and
distribution performance of MOEAs [16]. The definition of

IGD is as follows:

2 vepd Q)
P

where P represents the points in true PF with the number
|P| and Q represents the Pareto optimal solution obtained
by MOEAs. Thus, d(v, Q) is the minimum Euclidean dis-
tance between each of individuals in P and the set Q. The
smaller value of the IGD indicates the better performance of
the algorithms.

IGD(P, Q) = (5D

C. Background of the Experiments

In order to verify the competence of our proposed algorithm,
the contrast experiments with the representative of the state-
of-the-art algorithms are conducted.

The experiments are conducted on the Lenovo Think-Vision
and the operating system is Windows 7. All the algorithms are
coded in MATLAB 2014a. The parameters of our proposed
CMMOPIO algorithm are given in Table I.

D. Results and Analysis

1) Performance Comparisons With Five Multiobjective
Optimization Algorithms: In this part, seven test functions are
chosen from MOPs listed in Table II.

The comparative results of CMMOPIO with NSGA-II,
SPEA2, MOPSO, MOEA-D, and CMOPIO are provided in
Table III. The best, worst, mean, and standard deviation val-
ues of the performance measures are calculated to show the
properties of the algorithms in more aspects.

Figs. 6-12 show the obtained nondominated solution points
of six algorithms on seven benchmarks. As figures show,

NO  Test Function Search Dimension
Space
F1 f= 2 [_5,5] 1
fi=(x-2)
F2 = [-4,4] 10
Ji=1-exp(- Z(X J_) )
fim1-ep-30x +T) )
F3  fi=cos(zx,/2)-(1+g) [0,1] 10
f, =sin(zx, /2)-(1+g)
g= ’jzn(x, -0.5)
F4 fi=x [(),1] 10
fa :g~h
Zx
=1—Jﬁ/g
F5 fi=x [0’1] 10
fo=g-h
9 «
8= l+f : in
h=1-(f/g)
Fo6 fi=x [0,1] 10
fi=gh
-1 -gx‘.
h=1-\1,/g ~(f;/g) sin(10zx,)
F7 Sy =cos(zx, /2)-cos(nx, /2)-(1+g) [0,1] 10

f, =cos(zx, /2)-sin(zx, /2)-(1+g)
fi =sin(zx, /2)-(1+g)

2= (x-05)
=2

Test Functiop 1

Pareto Fronts
CMMOPIO

Parelo Fronts
CMOPIO

s

0 1 2 3 4 0 1 2 3 4

Pareto Fronts
MOPSO

Pareto Fronts
NSGA-II

0 g
0 1 2 3 4 0 1 2 3 4

Pareto Fronts
SPEA2

Pareto Fronts
MOEA-D

1 fl

Fig. 6. Nondominated solution set of six algorithms on test function 1.

the Pareto optimal solutions of the proposed CMMOPIO
algorithm could cover almost all of the true PF in seven
benchmarks. Thus, the convergence of CMMOPIO algorithm
is relative stable which is corresponding to the convergence
analysis. From the above results in Table III, it is obvious
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Test Function 2

o5 Nos5
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0 0.2 04 06 08 1 0 0.2 04 06 08 1
f1 f1
1 1<
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0
0 0.2 04 06 08 1 0 0.2 04 0.6 08 1
fl f1

O ParetoFronts O ParetoFronts
+  SPEA2 * MOEAD
0 » 0 »
0 0.2 04 06 08 1 0 0.2 04 06 08 1
fl f1

Fig. 7. Nondominated solution set of six algorithms on test function 2.

Test Function 3
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F
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o
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1 1
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- o .NGA.I|
1
1
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o 1 ot
05 05
0

t 0
0 0.5 1 15 0 05
f

1
1

Fig. 8. Nondominated solution set of six algorithms on test function 3.

Test Function 4

Pareto Fronts
CMOPIO
N2
R
0
0 0.2 0.

O PareloFronts
=} CMMOPIO

——
4 06 08 1

0 0.2 04 06 08 1
1

f1
Pareto Fronts O ParetoFronts
MOPSO + NSGA-II

0 0.2 04 06 08 1 0 0.2 04 06 08 1

f1 f1
O ParetoFronts O ParetoFronts
SPEA2 5 MOEA-D

0 0.2 04 06 08 1 0 0.2 04 0.6 08 1

Fig. 9. Nondominated solution set of six algorithms on test function 4.

that CMMOPIO algorithm outperforms MOPSO, NSGA-II,
SPEA2, MOEA/D, and CMOPIO algorithms on test function
1,2, 4, 6, and 7 out of seven test functions in respect of the best

955

Test Function “QH .
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} 6 08 S 02 04 06 08 1
f I

0

o
S0 PantoFrons
+  CMMOPIO
0 0.2 04 0

e
)

Pareto Fronts
NSGA-II

O ParetoFronts
+  MOPSO
02 04 06 08 1 0 0.2 04 06 08 1

f1

Pareto Fronts
MOEA-D
0 »

0 0.2 0.4 0.6 08 1
f1

Fig. 10. Nondominated solution set of six algorithms on test function 5.

Test Funcﬁqtn 6
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St CMMOPIO +  CMOPIO
o5 E N2 +

e
0 t 0
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e
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1 f1
1

O ParetoFronts o
+ MOPSO +

: L : \

04 0 .4

6 08 1

f1
O ParetoFronts
+ SPEA2
0 0.2 04 06 08 1 0 0.2 0.4 0.6 08 1

1 1

~
02

2y

0 0.6 0.8 1

Pareto Fronts
NSGA-Il

1

O ParetoFronts
+ MOEA-D

L s

Fig. 11. Nondominated solution set of six algorithms on test function 6.

Test Function 7

15 15

f1 2 fl f2

Fig. 12.  Nondominated solution set of six algorithms on test function 7.

value of the performance measures. It is worse than NSGA-II
and SPEA2 algorithms in respect of the average values of
the performance values because of its bigger worst values.
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TABLE III

RESULTS OF THE PERFORMANCE MEASURES FOR THE EIGHT TEST FUNCTIONS

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 5, OCTOBER 2020

CMMOPIO CMOPIO MOPSO NSGA-II SPEA2 MOEA-D
Fl1 GD best 1.5000e-09 0.0053 0.3880 5.7297e-04 6.0897¢-04 5.4472¢-04
worst 0.0072 0.0053 1.2865 7.7186¢-04 7.1417e-04 6.7503e-04
average 0.0038 0.0053 0.7455 6.6471e-04 6.6539¢-04 5.9392¢-04
Std.dev 0.0057 0 0.0584 1.7850e-04 7.6142¢-05 9.5398e-05
SP best 2.1213e-09 0.0033 3.5530 0.0039 0.0042 0.0034
worst 0.0078 0.0033 8.9611 0.0050 0.0049 0.0041
average 0.0041 0.0033 6.2484 0.0045 0.0045 0.0037
Std.dev 0.0057 0 0.2581 0.0010 5.0208e-04 5.5056e-04
F2 GD best 2.0193e-11 8.3327e-04 0.0014 7.5740e-05 7.8111e-05 7.0936¢-05
worst 5.2630e-04 8.3327¢-04 0.0018 1.0755e-04 9.2237¢-05 8.7138e-05
average 4.3325e-05 8.3327¢-04 0.0016 9.2288e-05 8.5362¢-05 7.9429¢-05
Std.dev 3.2917e-04 0 2.2206e-04 2.0692¢-05 2.4135e-06 1.1419¢-05
SP best 0 1.4119¢-04 4.8857¢-04 4.3747¢-04 4.5779¢-04 4.5093e-04
worst 7.1367e-04 1.4119¢-04 0.0084 5.5805e-04 5.6698¢e-04 5.5191e-04
average 5.0391e-05 1.4119e-04 0.0059 4.9766e-04 5.0696¢-04 4.9872¢-04
Std.dev 2.4794¢-04 0 0.0062 5.2154e-05 5.9932¢-05 6.5025¢-05
F3 GD best 1.5708¢e-04 0.4917 1.3300e-04 0.0067 0.0073 1.1876¢-04
worst 0.0704 0.5858 0.1579 0.0093 0.0081 0.0013
average 0.0025 0.4976 0.0817 0.0082 0.0078 2.8405¢e-04
Std.dev 0 0 0.0000 9.7456¢-04 4.7662¢-04 0.0012
SP best 1.6000e-05 0.6954 2.7861e-05 0.0604 0.0661 0.0010
worst 0.0989 0.8284 0.2233 0.0810 0.0723 0.0116
average 0.0034 0.7037 0.1140 0.0733 0.0698 0.0025
Std.dev 0 0 0.0000 0.0089 0.0039 0.0106
F4 GD best 7.3395e-05 1.4919 1.0680e-04 2.5694e-05 2.5949¢-05 2.1248e-05
worst 0.6412 1.5593 2.8820e-04 3.1770e-05 3.0410e-05 3.3462¢-05
average 0.1657 1.5026 1.9783e-04 2.8758e-05 2.8511e-05 2.8035e-05
Std.dev 0.4325 0.0048 2.5728e-05 2.5477e-06 3.0145e-06 7.8311e-06
SP best 2.5885e-06 0.5413 1.9314e-05 1.3141e-04 1.3125¢-04 1.1065¢e-04
worst 0.9066 2.1167 2.0198e-04 1.5939¢-04 1.5588¢-04 1.8401e-04
average 0.2341 1.2208 1.2264¢-04 1.4623e-04 1.4272¢-04 1.4193e-04
Std.dev 0.6115 1.5754 1.3266e-04 7.9301e-06 1.1415¢-05 3.9227e-05
F5 GD best 0 2.9273e-04 2.0980e-04 2.5057e-05 1.9207e-16 2.9273e-04
worst 1.1771 9.6986¢-04 1.6129 3.1476e-05 3.5579¢-05 9.6986¢-04
average 0.0417 8.8522¢-04 0.5647 2.8581e-05 2.1618e-05 8.8522¢-04
Std.dev 1.1771 6.7713¢-04 1.6127 2.2017e-06 1.5295e-11 6.7713e-04
SP best 0 3.3288e-04 2.7282¢-05 1.2968e-04 1.8352e-15 3.3288e-04
worst 1.6647 0.0011 2.2810 1.7905¢-04 2.1943e-04 0.0011
average 0.0589 0.0010 0.7984 1.4762¢-04 1.1233e-04 0.0010
Std.dev 1.6647 8.0429¢-04 2.2809 2.4142¢-05 1.5203e-10 8.0429¢-04
F6 GD best 0.0022 0.8127 9.0256¢-05 3.4399¢-05 1.4733e-05 4.5666¢e-05
worst 0.7194 0.8127 0.0591 6.1931e-04 4.3729e-05 0.0021
average 0.1574 0.8127 0.0255 2.0381e-04 2.0576e-05 3.0420e-04
Std.dev 0.4812 0 0.0590 2.3607e-04 1.2421e-06 9.8577e-04
SP best 0.0030 1.1492 6.1350e-05 3.1276¢-04 9.5622¢-05 4.1411e-04
worst 1.0492 1.1492 0.0364 0.0058 4.0530e-04 0.0181
average 0.2212 1.1492 0.0157 0.0019 1.5835¢-04 0.0027
Std.dev 0.6804 0 0.0363 0.0023 2.0345e-05 0.0093
F7 GD best 1.7411e-05 0.3464 2.3051e-05 0.0145 0.0104 2.6751e-04
worst 0.6253 0.3911 0.2095 0.0234 0.0134 8.4967¢e-04
average 0.1842 0.3721 0.0459 0.0192 0.0118 3.7416e-04
Std.dev 0.1271 0.0447 0.1187 0.0089 0.0014 6.7713e-04
SP best 2.1035e-05 0.5999 2.4365e-05 0.1339 0.0975 3.3288e-04
worst 1.0830 0.6766 0.3629 0.2050 0.1247 0.0082
average 0.3186 0.6440 0.0795 0.1721 0.1099 0.0074
Std.dev 0.2200 0.0766 0.2056 0.0711 0.0123 8.0150e-04

Particularly, CMMOPIO algorithm performs significantly bet-
ter on test function 1, 4, 6, and 7. CMMOPIO algorithm can
obtain the GD or SP result with an accuracy level of 1079,
while other algorithms can only obtain the results under an
accuracy of 1073 or 10™*. Therefore, CMMOPIO algorithms
can always find a set of nondominated solutions closer to the
true PFs in limited runs.

Through the contrast between CMMOPIO and CMOPIO
algorithm, it can be seen that the nondominated solutions

obtained by the CMMOPIO algorithm are with good diver-
sity and distributed uniformly. The distances between the
points are approximate and the range of the points in the
search space is wide. On the contrary, the CMOPIO algo-
rithm can only find part of the solutions, which illustrates
that CMOPIO algorithm is easy to be trapped into the
local optimum. Therefore, it is obvious that the mutant
mechanism plays a key role in searching the nondominated
solutions.
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Fig. 14. Nondominated solution set on test function 9 in 30, 50, 100 dimensions.

2) Performance Comparisons With CMMOPIO and Other
Three Algorithms in High Dimensions: To further investigate
the effect of the proposed algorithm in high dimensions, three
test functions with three dimensions are conducted between the
CMMOPIO algorithm and SPEA2, NSGA-III, and HypE algo-
rithms. The optimal Pareto solutions are drawn in curves. The
convergence performance and distribution performance are
estimated by indicator IGD which is depicted by histograms.
The definition of test functions is as follows.

1) Test function 8 (minimizing MOP)

fi =x
£ =@ (1= Vfi/g)

g=1+9. <Zx,'>/(n—l). (52)
i=2
2) Test function 9 (maximizing MOP)
f=xi
fr=g(1-i/e?)
g=1+9. Zx,)/(n—l). (53)
i=2
3) Test function 10 (minimizing MOP)
hi=xi
fa=800 = (f1/g) — (fi/8) - sin(107x1))
g=1+9. (Zx,-)/(n—l) (54)
i=2

where x = (x1, ..., x,)T € [0, 11"

It is obvious from Fig. 13 that all the four algorithms
could find the optimal Pareto solutions with the dimension
increases. In Fig. 14, CMMOPIO algorithm still keeps the
stable search ability in three dimensions while the points
of the other three algorithms gradually become spreading
out at the high dimension. This phenomenon is even more
obvious in Fig. 15 with segmented PFs. With the dimen-
sion increases, the numbers of PF segments found by the
contrast algorithms reduce gradually. On the contrast, the
proposed CMMOPIO algorithm could find five segments of
PF until the dimension increases to 100. It can be seen
more clearly in Fig. 16 that CMMOPIO algorithm have better
performance in searching optimal solutions and convergence
stability contrast to other three algorithms, especially, in high
dimensions.

The conclusions can be drawn that the nondominated set of
solutions in CMMOPIO algorithm distribute uniformly with
good diversity and coverage of the true PF. The superior
performance is mainly brought by utilizing the limit-cycle-
based mechanism and mutant mechanism. The limit-cycle-
based mechanism promotes the dynamic change of coefficients
k1 and k, to balance the global exploration and local exploita-
tion which enhanced the ability of searching optimal pareto.
The mutant mechanism helps the landmark operator migrated
from SOPs still work well in MOPs. The mutant X.., ..
increases the range of searching step to avoid being trapped in
the local optimal solutions which is easy to in face of during
the last stage of optimization. What is more, the setting of
coefficients k; and k> satisfies the convergence conditions in
Section IV.
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Function-10: D=50
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Fig. 16. 1IGD values of four algorithms in dimension 30, 50, 100 of function 8, 9, 10.

From the above experimental results, it is validated that

mechanism. Thus, the proposed CMMOPIO algorithm can

our proposed CMMOPIO algorithm outperforms the other
three algorithms in solving these three test function problems
with high dimensions. It is obvious that the indictor IGD of
CMMOPIO algorithm is relatively stable, and the mean data of
IGD in CMMOPIO algorithm outperforms HypE, SPEA2, and
NSGA-III algorithms in test functions 9 and 10. The results
demonstrate the global exploration, local exploitation abil-
ity, and convergence stability of the CMMOPIO algorithm

significantly improve the performance for solving MOPs.
Our future work will focus on further enhancing the
performance of CMMOPIO algorithm, and extend it to solve
more complicated MOPs with more optimized functions.
Furthermore, the extension of CMMOPIO algorithm to solve
some real-word problems will be studied in our future study.
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