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Abstract
This paper presents a hybrid simplified grey wolf optimization algorithm combining 
with an modified pigeon inspired optimization algorithm. Firstly, a method of popula-
tion initialization in the restricted area is designed to improve the average fitness of 
individuals. Then, a decay factor is designed to improve the search accuracy. At the 
same time, a new search position update formula is designed to balance the global 
search and local search ability, so as to improve the convergence speed of the algo-
rithm. Furthermore, in order to verify the performance, the convergence, complex-
ity and accuracy of the algorithm are analyzed by using linear difference equations. 
Finally, the comparison between different meta-heuristic optimization algorithms, the 
influence of parameters and their application in the path planning of unmanned aerial 
vehicle (UAV) are tested. Simulation results show that the proposed algorithm has 
stronger optimization ability and better robustness than those of compared algorithms.

Keywords  Grey wolf optimization (GWO) algorithm · Pigeon inspired optimization 
(PIO) algorithm · Hybrid optimization algorithm · Decay factor · Convergence rate

1  Introduction

As we known that intelligent optimization algorithms have been widely used in vari-
ous fields for their efficient performance advantages. They play a crucial role in the 
refueling optimization scheduling of multiple UAVs [1], express delivery efficiency 
[2], intelligent robot path optimization [3] and intelligent navigation [4]. With the 
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development of big data and artificial intelligence, many complex and challenging 
problems need to be solved.

For Non-deterministic Polynomial (NP) hard problems, there are two kinds of 
research methods commonly used to solve: One is heuristic method, such as artifi-
cial potential field (APF) method [5], simulated annealing (SA) algorithm [6]. Choi 
et al. [7] proposed a hybrid algorithm based on the genetic algorithm (GA) and the 
evolution strategy (ES) for the electromagnetic optimization problem. In order to 
make the algorithm more suitable for disaster scenarios, an adaptive selection muta-
tion constrained differential evolution algorithm [8] was proposed. It selects indi-
viduals according to individual fitness and constraints. Alkhateeb et al. [9] proposed 
discrete azalea search and simulated annealing (CSA) algorithm to solve continuous 
optimization problems. The heuristic optimization algorithm has the advantages of 
fast planning speed, good parallelism, and easy operation. Another is swarm intel-
ligence optimization algorithm, such as particle swarm optimization (PSO) algorithm 
[10], ant colony optimization (ACO) algorithm [11]. A modified PSO algorithm has 
been proposed by Lee et al. [12]. The ACO algorithm [13, 14] has been introduced to 
adaptively optimize the clustering number of position data and solve the over-fitting 
problem of the single k-means algorithm. An improved whale optimization algorithm 
(IWOA) based on logic mapping [15] was designed to perform parameters identifica-
tion. Unlike many traditional optimization algorithms, it relies on the instinct of each 
organism to optimize the survival state through unconscious evolution and optimiza-
tion behavior to adapt to different task environments. The robustness and convergence 
speed of the algorithm are always the focus of the optimization algorithm. More and 
more research is devoted to achieving a balance between the convergence and search 
ability of the algorithm [16–18]. The swarm intelligence optimization algorithm is 
based on the research of social insect group behavior. The macroscopic intelligent 
behavior characteristics of social organisms that achieve the goal of optimization 
through cooperation, information exchange and cooperation between groups and sim-
ple and seemingly individual interaction have received more and more attention.

Inspired by grey wolves, grey wolf optimization (GWO) algorithm was proposed 
[19]. It mimics the leadership hierarchy and hunting mechanism of grey wolves in 
nature. However, it is prone to stagnate in local solutions, and the convergence speed 
may be slower. A four steps decision wolf optimization algorithm and a GWO algo-
rithm combined with PSO algorithm [20, 21] were proposed to overcome the short-
comings. To solve the problem that the traditional GWO algorithm easily falls into 
the local minima when solving complex optimization problems, an improved GWO 
algorithm based on the two-stage search of hybrid covariance matrix adaptation-
evolution strategy (CMA-ES) was proposed by Zhao et al. [22]. In order to improve 
the convergence rate in the minimum period, Dev et al. [23] proposed a hybrid rider 
optimization algorithm (ROA) and GWO algorithm. It is proved that the optimal 
location of solution space can be searched quickly and effectively by using species 
evolution mechanism and parallel optimization method [24]. The GWO algorithm 
has been applied in many engineering applications, such as economic load dispatch 
problems [25], multi-tracking target [26], wide-area power system stabilizer design 
[27]. In the proposed algorithm [20–23], the exploration and exploitation abilities 
were combined efficiently. However, the convergence accuracy of the algorithm is 
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not further analyzed. In this paper, we use the linear difference equation method to 
comprehensively analyze the convergence speed and convergence accuracy of the 
proposed algorithm.

Pigeon inspired optimization (PIO) algorithm was originally developed by Duan 
and Qiao [28]. It is a population optimization algorithm simulating the homing 
behavior of pigeons. Compared with other optimization algorithms, PIO algorithm 
has the advantages of simple principle, less adjustment parameters, easy implemen-
tation and strong robustness. Duan et  al. [29] simplified the multi-objective PIO 
algorithm by considering the factors that affect the flight of pigeons. Mutation mech-
anism was introduced to enhance the exploration ability in the process of evolution. 
However, the computational complexity is not explained. After that, in order to bet-
ter solve the practical application problem, Duan et al. [30] proposed a dynamic dis-
crete pigeon heuristic optimization algorithm to deal with the cooperative search and 
attack mission planning of UAVs. This method focuses on the practical application 
scenario and dynamically demonstrates the coordinated flight process of UAVs. Wu 
et al. [31] introduced Gaussian mutation into the basic PIO algorithm to maintain 
the diversity of the group and avoid premature convergence. Then, the optimization 
of flight control system is considered. The existing algorithms focus on improving 
the PIO algorithm itself and apply it in the aerospace field. However, to our best 
knowledge, there is rarely result about combining PIO algorithm with other algo-
rithms and realizing their complementary advantages. In this paper, we designed the 
HSGWO-MPIO algorithm to reflect the advantages of the algorithm combination.

This paper not only overcomes the problems of large search range and fast matu-
rity of optimization algorithm, but also solves the problems of weak group search 
ability. The search accuracy and computational complexity are also considered. 
Hybrid optimization algorithm is the combination of simplified GWO algorithm and 
improved PIO algorithm. It transforms the original problem into the problem of ver-
ifying the feasibility of the algorithm under the new algorithm. The main contribu-
tions of this paper are summarized as follows: 

(1)	 A new decay factor is designed to simplified the GWO algorithm where the 
convergence speed of the simplified GWO algorithm is improved and the global 
optimization accuracy is maintained.

(2)	 Considering the computational complexity, the location updating formula of 
PIO algorithm is improved, which enriches the diversity of the population and 
increases the search range of the population.

(3)	 The convergence of the linear difference equation is analyzed theoretically, and 
the spatial complexity of the algorithm is analyzed to obtain the optimal global 
solution. The rationality, effectiveness and feasibility of the algorithm are veri-
fied by the comparison of algorithm parameters, algorithm convergence and 
UAV flight path.

The rest of this paper is arranged as follows. Section 2 presents a hybrid optimiza-
tion algorithm and analyzes the convergence, complexity and accuracy of the algo-
rithm. Section 3 shows the effectiveness of the method by compared simulations. 
Finally, Sect. 4 concludes the paper.
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2 � The hybrid SGWO‑MPIO algorithm

2.1 � Basic ideas of the proposed algorithm

To solve complex optimization problems, all the meta-heuristic algorithms like GWO 
algorithm and PIO algorithm have been designed. In GWO algorithm, the positions 
of individuals are updated according to the � wolf, � wolf and � wolf. Meanwhile, 
the exploration ability and the exploitation ability mainly depend on the parameter A. 
When the random values of A are in [−1, 1] , the wolves move with smaller distance, 
which means a process of local search.

In PIO algorithm, the update of the organisms’ position is not only related to the 
current optimal organism but also affected by random numbers in the population. In 
this way, all possible solutions can be searched during the optimization process. Con-
sequently, the optimization pattern of the GWO algorithm gives it a great exploration 
ability. In contrast, the PIO algorithm has an aptitude for local exploitation capability.

Therefore, to solve the complex problems, we have simplified the GWO algorithm 
to retain the exploration ability and accelerate the convergence speed. Then, the PIO 
algorithm is modified to enhance the exploitation capability. Finally, to combine the 
advantages of simplified GWO (SGWO) and modified PIO (MPIO) algorithm, we 
present a novel hybrid algorithm called the HSGWO-MPIO algorithm.

2.2 � Design process

GWO algorithm imitates the hunting mode of the ground wolf, decomposes the 
complex problem into different subsets to produce the best solution, but the local 
search ability is insufficient. PIO algorithm has the advantages of simple principle, 
easy implementation and strong robustness, but it is easy to fall into local optimum 
in search. In the proposed HSGWO-MPIO algorithm, the advantages of both GWO 
algorithm and PIO algorithm are combined to solve the optimization problems. The 
GWO algorithm is simplified to explore the possible solutions available in the search 
space and generate offspring. Then, the modified map and compass operator phase 
of the PIO algorithm were performed to exploit local solutions. The procedure of the 
HSGWO-MPIO algorithm is given as followings.

Step 1: Initialization
In order to improve the average fitness of individuals and avoid generating infeasi-

ble solutions, a method of population initialization in a restricted area is designed. The 
lower boundary is the coordinate of the previous location point, and the upper bound-
ary is the coordinate of the task target point. Therefore, in the path direction (from the 
starting point to the target point), the initialization distribution is basically satisfied, 
and the selection of task points obeys the uniform distribution in the specified interval:

where xi, xi+1 are the X coordinate; yi, yi+1 are the Y coordinate. tx and ty are the X and 
Y coordinates of the target point, respectively. U is the uniform distribution function 
of task points.

xi+1 ∼ U(xi, tx)

yi+1 ∼ U(yi, ty)
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Step 2: Updating individual position with SGWO
In the social hierarchy stage of the GWO algorithm, the three wolves with the 

best fitness in the wolf group are marked as � , � , � . The optimization process of 
the GWO algorithm is mainly guided by the three best solutions in each generation 
of population. In order to avoid the interference of too many candidate solutions to 
the optimization process of the algorithm, we simplified the GWO algorithm. We 
reserved the wolf � with the best fitness in the simplified GWO algorithm, and the 
update position of � wolf is selected as the optimal solution.

To accelerate the convergence speed, explore the solutions influenced by the best 
wolf in Eq. (4), individuals update their positions only affected by � wolf shown in 
Eqs. (4) and (5). Through this change, the advantage of the GWO algorithm in the 
exploration can be retained:

where as and af  are the initial and stop values of the attenuation factor, I is the cur-
rent iteration, and Imax is the maximum value of the iteration, r is the random factor 
of the range [0, 1] , and A(I) and C represent synergy coefficients. We know that the 
number of iterations I increases linearly. This feature can effectively ensure the bal-
ance between global search and local search.

Step 3: Updating individual position with MPIO
To improve the exploitation ability and avoid generating infeasible solutions, 

the modified map and compass operator phase of PIO algorithm were proposed for 
ensuring the efficiency of the proposed hybrid algorithm. Firstly, the general direc-
tion is identified by the geomagnetic field, and then, the current method is modi-
fied by the landform scene. The modified map and compass operator phase are as 
follows:

where R represents the map factor; generally, 0.2. � represents the inertia factor with 
a value range of [0, 1].

In the search formula of modified PIO algorithm, firstly, the general direction is iden-
tified by the geomagnetic field, and then, the current method is modified by the landform 

(1)a(I) = (af − as)

(

1 −
I

Imax

)

(2)A(I) = a(2r − 1)

(3)C = 2r

(4)D(I) = ∣ CX�(I) − Xi(I) ∣

(5)Xi(I + 1) =X�(I) − A(I)D(I)

(6)Vi(I) =Vi(I − 1)e−RI + r(X�(I) − Xi(I − 1))

(7)Xi(I) =Xi(I − 1) + �Vi(I)
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scene. At the same time, adjust the direction and position of the best pigeons until they 
reach the exact destination. The iterative search position of wolf � is the best position, 
so the speed formula is improved to Vi(I) = Vi(I − 1)e−RI + r

(

X�(I) − Xi(I − 1)
)

 , and 
the linear decreasing inertia weight factor � is added to the search position, in order to 
avoid falling into precocity in the search stage.

Step 4: Update the HSGWO-MPIO algorithm location
After reserving the best individual location and updating the individual location, 

the algorithm search location update formula is as follows:

By adding a linear inertia weight factor of � to the search location update formula, 
it helps the algorithm carry out dynamic optimization and avoid falling into a local 
optimal solution during the search phase.

Step 5: Go to Step2 until the termination condition is met
If the number of iterations reaches the maximum number, or the optimum solu-

tion has been found, the algorithm stops, otherwise, the algorithm continues to 
search for optimum result. If the standard deviation of the algorithm is s < 0.3 , it 
can be judged that the algorithm reaches the optimal solution. The flowchart of 
the HSGWO-MPIO algorithm is shown in Fig. 1, and the algorithm pseudocode is 
shown in Algorithm 1.

(8)Xinew(I + 1) = X�(I) − A(I)D(I) + �Vi(I)
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Fig. 1   Flowchart of the HSGWO-MPIO algorithm
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Remark 1  The proposed HSGWO-MPIO algorithm improves the performance of the 
intelligent optimization algorithm in terms of convergence speed and convergence 
accuracy. It balances the global search and local search capabilities and lays a good 
foundation for practical applications.

2.3 � Convergence analysis

After describing the HSGWO-MPIO algorithm design process, we will do the con-
vergence analysis in this subsection.

Definition 1 [32] Linear Difference Equations. Define B(⋅) ∶ J+ → Rn is a square 
nonsingular matrix,J+ is a set of the nonnegative integer, f ∗(⋅) ∶ J+ → Rn,X(I) ∈ Rn , 
for each I ∈ J+ , the linear difference equation and corresponding homogeneous lin-
ear equation with variable coefficients are as follows:

Theorem 1  The position update equation of the HSGWO-PIO algorithm is a first-
order linear time-varying difference equation.

Proof  According to Eqs.  (1)–(8), the whole position update equation of the 
HSGWO-MPIO algorithm is:

where X�(I) means the best individual in the current iteration. Define:

Thus, Eq. (9) can be written as follows:

So the position update equation of the HSGWO-MPIO algorithm can be written as 
the form of a first-order linear time-varying difference equation, and Theorem 1 is 
proved. 	�  ◻

Remark 2  When D(I) = Xi(I) − CX�(I) , define B(I) = −A(I) , 
f (I) = [1 + CA(I) + r�]X�(I) + �Vi(I − 1)e−RI − r�Xi(I − 1) . Then, we can get 
X(I + 1) = B(I)X(I) + f (I) ; Theorem 1 is proved.

X(I + 1) =B(I)X(I) + f (I)

X(I + 1) =B(I)X(I)

(9)

Xinew(I + 1) =X�(I) − CA(I)X�(I) + A(I)Xi(I) + +�Vi(I − 1)e−RI

+ r�X�(I) − r�Xi(I − 1)

=A(I)Xi(I) + [1 − CA(I) + r�]X�(I) + �Vi(I − 1)e−RI

− r�Xi(I − 1)

(10)B(I) = A(I)

f (I) = [1 − CA(I) + r�]X�(I) + �Vi(I − 1)e−RI − r�Xi(I − 1)

X(I + 1) = B(I)X(I) + f (I)
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Lemma 1  [32]

the stability degree of the linear difference equation is equivalent to the stability 
degree of the general solution of the corresponding homogeneous linear equation.

Lemma 2  [32] If there is a kind of matrix norm that satisfy:

then X(I + 1) = B(I)X(I) + f (I) can be guaranteed uniformly asymptotically stabil-
ity, where ‖ ⋅ ‖X means a certain norm,∀I0 ∈ R.

Theorem 2  When the condition of I → Imax is met, individuals will converge to the 
local or global optimum solutions.

Proof  According to Eqs. (1), (2) and (10), we have:

Thus, when the condition of I → Imax is met, according to Lemmas 1, 2, it can be 
ensured that the position update equation based on the SGWO-MPIO algorithm is 
stable. In other words, each individuals Xi will converge to a steady state Xe when 
the condition of is met(limI→Imax

Xi(I) = Xe ). So:

Substitute Eq. (9) into Eq. (12), we have:

Based on the Eqs. (10), (11), (13) is formed into:

Because of the randomness of � grey, we can get that:

∀f (I) ∈ [J+,Rn],

‖B(I)‖X ≤
I + 1

I + 2
, I = I0, I0 + 1,…

(11)
lim

I→Imax

A(I) = lim
I→Imax

(2r − 1)

[

(af − as)

(

1 −
I

Imax

)]

= (2r − 1) lim
I→Imax

[

(af − as)

(

1 −
I

Imax

)]

= 0

(12)lim
I→Imax

Xi(I + 1) = lim
I→Imax

Xi(I) = Xe

(13)
lim

I→Imax

Xi(I + 1) = lim
t→Imax

X�(I) − CA(I)X�(I) + A(I)Xi(I)

+ �Vi(I − 1)e−RI + r�X�(I) − r�Xi(I − 1) = Xe

lim
I→Imax

Xi(I + 1) = lim
t→Imax

X�(I) − CA(I)X�(I) + A(I)Xi(I)

+ �Vi(I − 1)e−RI + r�X�(I) − r�Xi(I − 1)

= lim
I→Imax

X�(I) + �Vi(I − 1)e−RI

+ r�X�(I) − r�Xi(I − 1)

=Xe
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Therefore, Eq. (12) can be written as follows:

So, when the condition of I → Imax is met, all individuals can converge to the opti-
mum solutions, and Theorem 2 is proved. 	�  ◻

In summary, the convergence of the HSGWO-MPIO algorithm can be insured 
when the condition of is met.

Remark 3  When D(I) = Xi(I) − CX�(I) , according to the reasoning of Theorem 1, 
Remark 1, Lemmas 1 and 2, we can get lim

I→Imax

Xi(I + 1) = lim
I→Imax

Xi(I) = Xe = X� . 
Theorem 2 is proved.

Remark 4  I and Imax are values in the range of 
[

0,N+
]

 . If Imax is too small, I

Imax

→ 1 . So 
that we can get lim

I→Imax

A(I) = 0 . It can be further obtained lim
I→Imax

Xi(I + 1)
= lim

I→Imax
Xi(I) = Xe = X� . So, if Imax is too small, all individuals can converge to the 

optimum solutions.

2.4 � Computational complexity

As shown in the loop diagram, the algorithm can be divided into four stages: ini-
tialization, SGWO algorithm, MPIO algorithm and update location formula. The 
algorithm is suitable for the population with size N, the position of individual in 
the population is a vector with size P, and the number of iterations to task is I. 
The space complexity and time complexity of the algorithm are mainly affected 
by the phase of the algorithm.

Phase 1: Initialization
The first section of the program is executed once at the beginning to prepare 

for the next stage. The space complexity of this stage is O(N ∗ P) . Time com-
plexity is O(N ∗ P ∗ I) , and the complexity of the decision stop standard is O(1).

Phase 2: Simplified GWO position update operator
SGWO creates a new location for each individual affected by the � wolf, and 

all the original locations will be replaced by the new location. The space com-
plexity of this phase is O

(

NX� − ADN
)

 . Time complexity is O
(

NX�I − ADNI
)

.
Phase 3: Modified PIO map operator
MPIO calculates the new location affected by random factors. If the new 

location provides a more appropriate value, then, the original location will be 

⎧

⎪

⎨

⎪

⎩

lim
I→Imax

Xi(I) = X�

lim
I→Imax

Xi(I + 1) = X�

lim
I→Imax

Xi(I + 1) = lim
I→Imax

Xi(I) = Xe = X�
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replaced. The space complexity of this stage is O
(

NXi + �NVi

)

 . Time complex-
ity is O

(

NXiI + �NViI
)

.
Phase 4: Update location formula optimization stage
The updated location formula retains the essence of the GWO algorithm 

and the PIO algorithm and generates a new location update formula after con-
sidering the optimization efficiency and practical operation. At this stage, the 
space complexity is O

(

NX� − ADN + �NV
)

 . The time complexity at this stage is 
O
(

NX�I − ADNI + �NVI
)

.

Remark 5  This part analyzes the computational complexity of each part of the 
HSGWO-MPIO algorithm. Compared with the GWO [22] algorithm and the PIO 
[31] algorithm, it has the advantages of speed and accuracy in each iteration and can 
effectively improve the convergence speed compared with the original algorithm.

2.5 � Algorithm comparison and accuracy

Compared with traditional heuristic optimization algorithms, such as PSO algo-
rithm [33] and WOA [34], the HSGWO-MPIO optimization algorithm can take 
into account the global development ability and local search ability, make up for 
the shortcomings of the single optimization algorithm in the convergence speed 
and calculation accuracy and achieve the complementary advantages between the 
algorithms.

Compared with the existing improved optimization algorithms, such as hybrid 
algorithm combing genetic algorithm with evolution strategy (GAES) [7], an 
improved hybrid grey wolf optimization algorithm (GWOPSO) [21] and dis-
crete hybrid cuckoo search and simulated annealing Algorithm (DCSA) [9], 
the HSGWO-MPIO algorithm has advantages in principle, parameter selection, 
robustness, etc. The HSGWO-MPIO algorithm preserves the parts of the basic 
algorithm that has good optimization results, simplifies the steps of the hybrid 
algorithm and has advantages in algorithm principle. Moreover, in terms of 
parameter selection, the HSGWO-MPIO algorithm reduces the range of param-
eter selection. It avoids previous empirical selection and effectively improves the 
quality of the optimal solution. Finally, the designed HSGWO-MPIO algorithm 
provides a condition s < 0.3 for outputting the optimal solution. In this way, it 
improves the computational accuracy of the algorithm and ensures its robustness.

Compared with GWO [19] algorithm, HSGWO-MPIO algorithm is helpful 
for the algorithm to jump out of the local and maintain the development ability, 
improve the search ability. Compared with PIO [28] algorithm, HSGWO-MPIO 
algorithm is helpful to expand the candidate solution space, improve the search 
range and accelerate the convergence rate of the algorithm.

From the perspective of momentum, the current speed is affected by the previ-
ous speed and the optimal global position, and 0 < r < 1 can limit the speed Vi(I) 
to be too large. In other words, the current velocity is gradual, not transient, and it 
is a process of momentum. This ensures the stability and accuracy of the search, 
reduces the shock and reaches the optimal value quickly.
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Remark 6  Since the HSGWO-MPIO algorithm is improved on the basis of the GWO 
algorithm and PIO algorithm. Compared with the basic optimization algorithm, the 
algorithm has updated the form of the attenuation factor, introduced the relation-
ship between the global search and the local search of inertial silver balance and can 
quickly reach the ideal convergence state under dynamic conditions. There are obvi-
ous advantages.

3 � Compared simulations

In this section, five simulation situations are considered, namely the influence of 
inertia factor � on the algorithm, the influence of random factor r on the algo-
rithm, the comparison of different algorithms, application of UAV path trajectory 
and ablation experiment. Given the initial range of the algorithm, the simulation 
of each part of the algorithm is as follows:

Simulation 1: Influence of inertia factor � on algorithm
Make r = 0.4 , to test the influence of inertia factor � on the optimi-

zation ability, the following six cases based on r = 0.4 are simulated: 
� = 0.4,� = 0.45,� = 0.5,� = 0.55,� = 0.6 and � = 0.65 . Simulation result 
is presented in Fig.  2. As can be seen from Fig.  2a, when � = 0.5 , the optimiza-
tion ability of the hybrid algorithm is best, which can help the algorithm effectively 
improve the convergence speed between global search and local search, followed by 
� = 0.55 . When � = 0.6 , � = 0.65 and � = 0.4 , the convergence speed of the algo-
rithm is obviously inferior to that of � = 0.5 and � = 0.55 . Although the value of � 
starts from 0, simulation results show that the optimization effect of the hybrid algo-
rithm is not ideal when the value of 𝜔 < 0.4 . Figure 2b gives that the random value 
from 0 to 0.4 cannot achieve the optimization effect of the hybrid algorithm. There-
fore, the random factor has an impact on the global search. The larger the value of � , 
the stronger the global optimization ability, and vice versa.

Simulation 2: Influence of random factors r on algorithm
Make � = 0.5 , to test the influence of the random factor r on the optimization 

ability, the following nine cases based on are simulated: r = 0 , r = 0.1 , r = 0.2 , 
r = 0.4 , r = 0.5 , r = 0.6 , r = 0.8 , r = 0.9 and r = 1 . When other variables of the 
algorithm remain unchanged, we change the value of r and run the algorithm to 
compare the optimization ability under different r. Figure 3 presents that when the 
value of r fluctuates around 0.4, the proposed hybrid algorithm has better optimiza-
tion ability, followed by r = 0.9 . When r is 0.1, 0.6, 0.8, 1, the convergence effect of 
the optimization algorithm deviates from the expectation and does not achieve the 
desired effect. When r = 0.2 and r = 0.5 , the optimization ability of the proposed 
HSGWO-MPIO algorithm is worst. When r = 0 , the algorithm cannot operate and 
does not reach the ability of global search and local search.

Simulation 3: Performance comparison of different algorithms
In order to study the advantage of the proposed algorithm, PSO [33], GWO [19], 

PIO [28], WOA [34], GAES [7], DGWO [20], GWOPSO [21] and DCSA [9] are 
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compared with the proposed algorithm. Under the same function model, each algo-
rithm performs 30 searches to calculate the best location. The results are shown in 
Table 1 and Fig. 4. Compared with the other eight algorithms, the simulation result 
of the proposed algorithm has smaller mean values. Meanwhile, a lower standard 
deviation value proves that the HSGWO-MPIO algorithm can search for the optimal 
path stably. The optimal search scores of PSO, GWO, PIO, WOA, GAES, DGWO, 
GWOPSO and DCSA are 3.437, 9.138, 3.651, 3.136, 3.434, 3.197, 8.498 and 3.013, 
respectively. Our algorithm has the best stability among all comparison algorithms, 
and its convergence rate is shown in Fig. 5. It can be clearly seen from the figure that 
the designed HSGWO-MPIO algorithm has the fastest convergence rate of all com-
parison algorithms.

Simulation 4: Comparison of UAV trajectory application based on different 
algorithms

In this experiment, the path planning diagram of UAV is generated under GWO 
algorithm, PIO algorithm and HSGWO-MPIO algorithm, respectively. The objec-
tive function and constraint conditions of UAV flight path are as follows:

where l represents the number of track segments, Li represents the track length of 
segment i, this item represents the distance cost, Hi represents the average altitude 
of segment i, this item represents the altitude cost, Ti represents the threat index of 
segment i, and this item represents the threat cost. k1 + k2 + k3 = 1 represents the 
weight value of distance cost, altitude cost and threat cost, and the selection of 

min J =
l
∑

i=1

�

k1L
2

i
+ k2H

2

i
+ k3T

2

i

�

s.t. df − Rj > 0

Fig. 2   Influence of inertia factor � on algorithm
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weight value is related to the flight mission requirements. df  represents the UAV 
fuselage width, and Rj represents the threat radius.

The whole space is set into three random obstacle avoidance areas. The starting 
coordinates of the UAV are [ 0, 0 ] km and the coordinates of the target point are 
[ 4, 6 ] km. The speed range of UAV is [ 100, 200 ] m/s. Other parameters are as 
follows: the population was 100, the number of iterations was 50, af = 0 , a2 = 2 , 
r = 0.42 , � = 0.5 . Under the same model and parameter selection, the UAV flight 
trajectory figures using GWO algorithm, PIO algorithm and HSGWO-MPIO algo-
rithm are compared. In Fig. 6, it can be seen that compared with the proposed hybrid 
algorithm, the flight trajectory using a single algorithm can generate a smoother 
flight path but cannot successfully avoid all threats, while the HSGWO-MPIO algo-
rithm can avoid threats and generate smooth flight trajectory.

Simulation 5: Ablation experiment
In Simulation 1 and Simulation 2, we have discussed the influence of random fac-

tor r and inertia factor � on the convergence speed of the algorithm under different 

Fig. 3   r parameter diagram

Table 1   Comparison of search location values

Algorithm name Worst score Best score Median value Mean value Standard deviation

PSO 5.491 3.437 4.982 4.464 1.148
GWO 12.54 9.138 11.01 10.839 1.902
PIO 6.175 3.651 4.806 4.913 1.411
WOA 6.089 3.136 4.517 4.6125 1.651
GAES 4.443 3.434 4.03 3.9385 0.564
DGWO 4.304 3.197 3.701 3.7505 0.6188
GWOPSO 11.21 8.498 10.25 9.854 1.416
DCSA 3.281 3.013 3.115 3.147 0.2598
HSGWO-MPIO 3.136 3.005 3.083 3.0705 0.173
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values. The results show that when r = 0.4 and � = 0.5 , the convergence perfor-
mance of the algorithm is the best.

In order to further verify the performance of the optimization algorithm in practi-
cal applications, in this experiment, we discuss the influence of inertia factor � and 
random factor r on the flight path of UAV under different values.

Case 1: Influence of inertia factor � on UAV flight trajectory
To test the influence of inertia factor � on UAV flight trajec-

tory, let random factor r the following nine cases are simulated: 
� = 0.1, � = 0.2, � = 0.4, � = 0.45, � = 0.5, � = 0.55, � = 0.6, � = 0.65 and 

Fig. 4   Standard map of algorithm comparison experiment

Fig. 5   The convergence of 
compared algorithms
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� = 0.8 . Simulation result is presented in Fig. 7. As can be seen from Fig. 7, when 
� = 0.5 , UAV can efficiently avoid threats and generate optimal trajectory. When 
� = 0.55 , the UAV optimization capability takes the second place. Through many 
simulation experiments, it can be found that the change of � has an impact on the 
global search ability of UAV. When 𝜔 < 0.4 , the UAV cannot successfully avoid 
the threat. When � ≥ 0.4 , the UAV can successfully avoid the threat and generate 
flight path. It can be seen from the figure that inertia factor � focuses on the global 
search, which changes the search weight of the compass operator. This is conducive 
to the algorithm jumping out of the local, and the effect is obvious in the later stage 
of iteration.

Case 2:  Influence of random factor r on UAV flight trajectory
To test the influence of random factor r on UAV flight trajec-

tory, let inertia factor � = 0.5 the following nine cases are simulated: 
r = 0, r = 0.1, r = 0.2, r = 0.4, r = 0.5, r = 0.6, r = 0.8, r = 0.9 and r = 1 . Simu-
lation result is presented in Fig. 8. As can be seen from Fig. 8, when r = 0.4 , UAV 
can efficiently avoid threats and generate optimal trajectory. When r = 0.9 , the UAV 
optimization capability takes the second place. With the same other parameters, it 
can be seen from Fig. 8 that when r takes other values, the safe distance between the 
UAV and the threat is too small during flight, which is not conducive to the flight 
mission. Through many simulation experiments, it can be seen that the change of 
r affects the local search ability of UAV. The change of the random factor r values 
will cause the values of A to change, which determines whether to search for opti-
mization in various regions or to search for some regions in a centralized way. This 
is conducive to the identification and avoidance of threats, which is crucial at every 
step of the iteration.

Fig. 6   Flight trajectory of UAV under three algorithms
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4 � Conclusions

This paper proposes the HSGWO-MPIO algorithm based on simplified GWO algo-
rithm and modified PIO algorithm. The algorithm effectively combines the explo-
ration ability of GWO algorithm with the development ability of PIO algorithm. 
The ability of population initialization is enhanced, the convergence stage of GWO 
algorithm is simplified, and a new decay factor is designed to maintain the search 

Fig. 7   Influence of inertia factor � on UAV flight trajectory

Fig. 8   Influence of random factor r on UAV flight trajectory
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ability of the population. The map and compass operator phase of PIO algorithm 
were modified, and a new position update formula is designed to improve the devel-
opment ability of the algorithm. Then, the convergence of HSGWO-MPIO algo-
rithm is analyzed by using the linear difference equation method. At the same time, 
the computational complexity is analyzed by the population size and dimension. 
Finally, comparative experimental results show that HSGWO-MPIO algorithm has 
better convergence speed and search accuracy than those of other heuristic optimiza-
tion algorithms. The HSGWO-MPIO algorithm can successfully obtain an effective 
and safe flight path. In the future, we will be devoted to reducing the complexity of 
hybrid algorithms and conducting research on high-dimensional optimization algo-
rithms. In terms of application, the HSGWO-MPIO algorithm will be applied to the 
path planning of multiple UAVs, providing better service support for combat sce-
narios, express delivery scenarios and agricultural scenarios.

Acknowledgements  All authors contributed to the study conception and design. The conceptualization 
and the methodology were formulated by XZ and FW. Data curation was completed by XZ and RS. And 
the formal analysis was finished by XZ, FW and CZ. All authors have read and agreed to the published 
version of the manuscript.

Funding  This work was supported in part by Science and Technology Project of Hebei Education 
Department (ZD2022012), Natural Science Foundation of Hebei Province (F2020203105, F2022203085) 
and National Natural Science Foundation of China (62073234).

Data availability statement  The datasets generated during and/or analyzed during the current study are 
available from the corresponding author on reasonable request.

Declarations 

Ethical approval  This article does not contain any studies with human participants or animals performed 
by any of the authors.

Conflict of interest  The authors have no conflict of interest.

References

	 1.	 Jin Z, Shima T, Schumacher CJ (2006) Optimal scheduling for refueling multiple autonomous 
aerial vehicles. IEEE Trans Robot 22(4):682–693. https://​doi.​org/​10.​1109/​TRO.​2006.​878793

	 2.	 She R, Ouyang Y (2020) Efficiency of UAV-based last-mile delivery under congestion in low-
altitude air. Transp Res C 122:1–13. https://​doi.​org/​10.​1016/j.​trc.​2020.​102878

	 3.	 Pardo D, Möller L, Neunert M et  al (2016) Evaluating direct transcription and nonlinear opti-
mization methods for robot motion planning. IEEE Robot Autom Lett 1(2):946–953. https://​doi.​
org/​10.​1109/​LRA.​2016.​25270​62

	 4.	 Han Y, Wang B, Deng Z et al (2016) An improved TERCOM-based algorithm for gravity-aided 
navigation. IEEE Sens J 16(8):2537–2544. https://​doi.​org/​10.​1109/​JSEN.​2016.​25186​86

	 5.	 Zhu Z, Yin Y, Lyu H (2023) Automatic collision avoidance algorithm based on route-plan-
guided artificial potential field method. Ocean Eng 271:1–23. https://​doi.​org/​10.​1016/j.​ocean​eng.​
2023.​113737

	 6.	 Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8(1):10–15. https://​doi.​org/​10.​
1214/​ss/​11770​11077

https://doi.org/10.1109/TRO.2006.878793
https://doi.org/10.1016/j.trc.2020.102878
https://doi.org/10.1109/LRA.2016.2527062
https://doi.org/10.1109/LRA.2016.2527062
https://doi.org/10.1109/JSEN.2016.2518686
https://doi.org/10.1016/j.oceaneng.2023.113737
https://doi.org/10.1016/j.oceaneng.2023.113737
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1214/ss/1177011077


16015

1 3

The HSGWO‑MPIO algorithm based on improved search capability﻿	

	 7.	 Choi K, Jang DH, Kang SI et al (2016) Hybrid algorithm combing genetic algorithm with evolu-
tion strategy for antenna design. IEEE Trans Magn 52(3):1–4. https://​doi.​org/​10.​1109/​TMAG.​
2015.​24860​43

	 8.	 Yu X, Li C, Zhou J (2020) A constrained differential evolution algorithm to solve UAV path 
planning in disaster scenarios. Knowl Based Syst 204:1–11. https://​doi.​org/​10.​1016/j.​knosys.​
2020.​106209

	 9.	 Alkhateeb F, Abed-alguni BH, Al-rousan MH (2022) Discrete hybrid cuckoo search and simu-
lated annealing algorithm for solving the job shop scheduling problem. J Supercomput 78:4799-
C4826. https://​doi.​org/​10.​1007/​s11227-​021-​04050-6

	10.	 Abdeyazdan M (2017) A new method for the informed discovery of resources in the grid system 
using particle swarm optimization algorithm. J Supercomput 73:5354-C5377. https://​doi.​org/​10.​
1007/​s11227-​017-​2090-y

	11.	 Yan F (2020) Gauss interference ant colony algorithm-based optimization of UAV mission plan-
ning. J Supercomput 76:1170-C1179. https://​doi.​org/​10.​1007/​s11227-​018-​2540-1

	12.	 Lee JH, Song JY, Kim DW et  al (2018) Particle swarm optimization algorithm with intelli-
gent particle number control for optimal design of electric machines. IEEE Trans Ind Electron 
65(2):1791–1798. https://​doi.​org/​10.​1109/​TIE.​2017.​27608​38

	13.	 Li H, Baoyin H (2020) Optimization of multiple debris removal missions using an evolving elit-
ist club algorithm. IEEE Trans Aerosp Electron Syst 56(1):773–784. https://​doi.​org/​10.​1109/​
TAES.​2019.​29343​73

	14.	 Cheng R, Song Y, Chen D et  al (2019) Intelligent positioning approach for high speed trains 
based on ant colony optimization and machine learning algorithms. IEEE Trans Intell Transp 
Syst 20(10):3737–3746. https://​doi.​org/​10.​1109/​TITS.​2018.​28784​42

	15.	 Wang Y, Zhang Y, Xu D et al (2022) Improved whale optimization-based parameter identifica-
tion algorithm for dynamic deformation of large ships. Ocean Eng 245:1–9. https://​doi.​org/​10.​
1016/j.​ocean​eng.​2021.​110392

	16.	 Khan MSA, Santhosh R (2021) Task scheduling in cloud computing using hybrid optimization 
algorithm. Soft Comput. https://​doi.​org/​10.​1007/​s00500-​021-​06488-5

	17.	 Kumar RP, Raj JS, Smys S (2021) Performance analysis of hybrid optimization algorithm for 
virtual head selection in wireless sensor networks. Wirel Pers Commun 123:1925–1940. https://​
doi.​org/​10.​1007/​s11277-​021-​09222-4

	18.	 Chandrasekhar U, Khare N (2021) An intelligent tutoring system for new student model using 
fuzzy soft set-based hybrid optimization algorithm. Soft Comput 25:14979–14992. https://​doi.​
org/​10.​1007/​s00500-​021-​06396-8

	19.	 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://​
doi.​org/​10.​1016/j.​adven​gsoft.​2013.​12.​007

	20.	 Pan C, Si Z, Du X et al (2021) A four-step decision-making grey wolf optimization algorithm. 
Soft Comput 25:14375–14391. https://​doi.​org/​10.​1007/​s00500-​021-​06194-2

	21.	 Teng Z, Lv J, Guo L (2019) An improved hybrid grey wolf optimization algorithm. Soft Comput 
23:6617–6631. https://​doi.​org/​10.​1007/​s00500-​018-​3310-y

	22.	 Zhao Y, Li W, Liu A (2020) Improved grey wolf optimization based on the two-stage search of 
hybrid CMA-ES. Soft Comput 24:1097–1115. https://​doi.​org/​10.​1007/​s0050​0C019​C0394​8Cx

	23.	 Dev K, Poluru RK, Kumar L et  al (2021) Optimal radius for enhanced lifetime in IoT using 
hybridization of rider and grey wolf optimization. IEEE Trans Green Commun Netw 5(2):635–
644. https://​doi.​org/​10.​1109/​TGCN.​2021.​30691​87

	24.	 Qu C, Gai W, Zhang J et al (2020) A novel hybrid grey wolf optimizer algorithm for unmanned 
aerial vehicle (UAV) path planning. Knowl Based Syst 194:1–14. https://​doi.​org/​10.​1016/j.​kno-
sys.​2020.​105530

	25.	 Pradhan M, Roy PK, Pal T (2016) Grey wolf optimization applied to economic load dispatch 
problems. Int J Electr Power Energy Syst 83:325–334. https://​doi.​org/​10.​1016/j.​ijepes.​2016.​04.​
034

	26.	 Yao P, Wang H, Ji H (2016) Multi-UAVs tracking target in urban environment by model predic-
tive control and improved grey wolf optimizer. Aerosp Sci Technol 55:131–143. https://​doi.​org/​
10.​1016/j.​ast.​2016.​05.​016

	27.	 Shakarami M, Davoudkhani IF (2016) Wide-area power system stabilizer design based on grey 
wolf optimization algorithm considering the time delay. Electr Power Syst Res 133:149–159. 
https://​doi.​org/​10.​1016/j.​epsr.​2015.​12.​019

https://doi.org/10.1109/TMAG.2015.2486043
https://doi.org/10.1109/TMAG.2015.2486043
https://doi.org/10.1016/j.knosys.2020.106209
https://doi.org/10.1016/j.knosys.2020.106209
https://doi.org/10.1007/s11227-021-04050-6
https://doi.org/10.1007/s11227-017-2090-y
https://doi.org/10.1007/s11227-017-2090-y
https://doi.org/10.1007/s11227-018-2540-1
https://doi.org/10.1109/TIE.2017.2760838
https://doi.org/10.1109/TAES.2019.2934373
https://doi.org/10.1109/TAES.2019.2934373
https://doi.org/10.1109/TITS.2018.2878442
https://doi.org/10.1016/j.oceaneng.2021.110392
https://doi.org/10.1016/j.oceaneng.2021.110392
https://doi.org/10.1007/s00500-021-06488-5
https://doi.org/10.1007/s11277-021-09222-4
https://doi.org/10.1007/s11277-021-09222-4
https://doi.org/10.1007/s00500-021-06396-8
https://doi.org/10.1007/s00500-021-06396-8
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s00500-021-06194-2
https://doi.org/10.1007/s00500-018-3310-y
https://doi.org/10.1007/s00500C019C03948Cx
https://doi.org/10.1109/TGCN.2021.3069187
https://doi.org/10.1016/j.knosys.2020.105530
https://doi.org/10.1016/j.knosys.2020.105530
https://doi.org/10.1016/j.ijepes.2016.04.034
https://doi.org/10.1016/j.ijepes.2016.04.034
https://doi.org/10.1016/j.ast.2016.05.016
https://doi.org/10.1016/j.ast.2016.05.016
https://doi.org/10.1016/j.epsr.2015.12.019


16016	 X. Zhou et al.

1 3

	28.	 Duan H, Qiao P (2014) Pigeon-inspired optimization: a new swarm intelligence optimizer for air 
robot path planning. Int J Intell 7(1):24–37. https://​doi.​org/​10.​1108/​IJICC-​02-​2014-​0005

	29.	 Duan H, Huo M, Shi Y (2020) Limit-cycle-based mutant multiobjective pigeon-inspired optimi-
zation. IEEE Trans Evol Comput 24(5):948–959. https://​doi.​org/​10.​1109/​TEVC.​2020.​29833​11

	30.	 Duan H, Zhao J, Deng Y et al (2021) Dynamic Discrete Pigeon-Inspired Optimization for Multi-
UAV Cooperative Search-Attack Mission Planning. IEEE T Aero Elec Sys 57(1):706–720. 
https://​doi.​org/​10.​1109/​TAES.​2020.​30296​24

	31.	 Wu Z, Liu Y (2022) Integrated optimization design using improved pigeon-inspired algorithm 
for a hypersonic vehicle model. Int J Aeronaut Space 23(5):1033–1042. https://​doi.​org/​10.​1007/​
s42405-​022-​00492-1

	32.	 Chen Y, Yu J, Mei Y et al (2016) Modified central force optimization (MCFO) algorithm for 3D 
UAV path planning. Neurocomputing 171:878–888. https://​doi.​org/​10.​1016/j.​neucom.​2015.​07.​
044

	33.	 James K, Russell E (1995) Particle swarm optimization. In: Proceedings of ICNN’95: Inter-
national Conference on Neural Networks, vol 4, pp 1942–1948. https://​doi.​org/​10.​1109/​ICNN.​
1995.​488968

	34.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://​
doi.​org/​10.​1016/j.​adven​gsoft.​2016.​01.​008

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1108/IJICC-02-2014-0005
https://doi.org/10.1109/TEVC.2020.2983311
https://doi.org/10.1109/TAES.2020.3029624
https://doi.org/10.1007/s42405-022-00492-1
https://doi.org/10.1007/s42405-022-00492-1
https://doi.org/10.1016/j.neucom.2015.07.044
https://doi.org/10.1016/j.neucom.2015.07.044
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008

	The HSGWO-MPIO algorithm based on improved search capability
	Abstract
	1 Introduction
	2 The hybrid SGWO-MPIO algorithm
	2.1 Basic ideas of the proposed algorithm
	2.2 Design process
	2.3 Convergence analysis
	2.4 Computational complexity
	2.5 Algorithm comparison and accuracy

	3 Compared simulations
	4 Conclusions
	Acknowledgements 
	References




