
  

Abstract—Unmanned aerial vehicles (UAVs) collaboration is 

a key technology to UAV cargo delivery in the near future. In 

this paper, distribution requirement parameters are identified 

to establish a multi-objective cargo delivery assignment model 

where a large number of tasks are allocated. To optimize 

high-dimensional multi-UAV task assignment problem, a 

time-varying constriction pigeon-inspired optimization with 

memory retrospection (TCMR-PIO) is proposed. A memory 

retrospection mechanism is developed to increase the 

multiplicity of pigeon flock and avoid premature convergence. 

Meanwhile, a time-varying constraint factor is utilized to 

provide the improved algorithm with higher accuracy and 

stability. While maintaining the advantage of high convergence 

speed, an optimized task assignment scheme can be obtained. 

Comparative simulation experiments with particle swarm 

optimization (PSO), pigeon-inspired optimization (PIO), 

quantum pigeon-inspired optimization (QPIO), adaptive 

weighted pigeon-inspired optimization (AWPIO) and nonlinear 

dynamic adaptive inertial weight particle swarm optimization 

(PSO-DAIW) are carried out, and the performance of the 

TCMR-PIO algorithm validates its effectiveness and superiority 

on cargo delivery assignment. 

I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) have significant 
strengths and broad market prospects in urban low-altitude 
transportation logistics based on the characteristics of not 
being limited by ground transportation, strong flexibility, and 
low cost. Contactless delivery, which means automatic 
distribution of goods without human face-to-face contact, can 
also be achieved in UAV cargo delivery. UAVs are predicted 
to be a main stream in low-altitude air transportation. The 
market of goods delivery is also in need of unmanned aerial 
mobility in the near future [1]. 

Cargo delivery assignment is to assign a group of tasks to 
multiple UAVs considering the environmental elements and 
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distribution requirements. The optimization of dispatching 
efficiency and resource consumption based on the completion 
of tasks is regarded as one of the main challenges in 
multi-objective task allocation problem in contactless cargo 
delivery [2]. In order to achieve the subsequent task planning 
of cargo delivery in the next stage, such as path planning, 
assigning tasks in advance is a significant procedure in UAV 
decision making. Requirements of flight safety can be 
satisfied as well. 

Applications of various algorithms in the field of UAV 
cargo delivery have been proved feasible and effective. 
Bio-inspired intelligent computing algorithms such as ant 
colony optimization (ACO), genetic algorithms (GAs) and 
particle swarm algorithms (PSO) are applied in vehicle routing 
problem in UAV delivery [3]. An auction algorithm together a 
quantum PSO is utilized in task assignment and path planning 
in “the last mile” of cargo distribution [4]. A multi-objective 
uncontrolled solving ACO algorithm is developed to support 
the scheduling of delivery [5]. For multi-objective task 
assignment problem, GAs combined with ACO plays an 
important role in obtaining task allocation solutions [6-9]. The 
potential of the PSO algorithm is also thoroughly exploited in 
this topic [10-12]. 

However, the algorithms for UAV cargo delivery 
assignment and task allocation are mostly conducted on 
occasions where the scale of missions and UAVs is small, 
usually less than 20 objectives. As to higher-dimensional 
cases, the condition and constraints would be more 
complicated. As a global search algorithm, GAs is dominant in 
obtaining the globally optimal solution, but its deficiency of 
low convergence speed is exposed in higher-dimensional 
problems. ACO is similar to GAs in this point. For the PSO, 
the characteristic of fewer parameters makes it more effective 
in practical application. However, it has relatively low speed 
in global convergence, especially in the late stage of evolution. 

Pigeon-inspired optimization (PIO) is a new and 
innovative bio-inspired intelligent computing algorithm 
originated from the pigeon flock navigation ability in homing, 
which has been successfully applied to dealing with the 
problems such as path planning [13], image restoration [14], 
target defense [15], autonomous control [16] and so on. 
Although with the advantages of high convergence speed, 
strong scalability, and interactive information sharing among 
different individuals, it is difficult for the original PIO to 
overcome its deficiencies of obtaining sub-optimal solutions 
and generally limited by premature convergence.  

In this paper, a time-varying constriction pigeon-inspired 
optimization with memory retrospection (TCMR-PIO) is built 
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to explore better solutions to the task allocation problem in 
UAV cargo delivery. The improvement of PIO model consists 
of two steps: memory retrospection and time-varying 
constriction. On the one hand, the capability of searching 
globally optimal solution is enhanced by adding the memory 
retrospection mechanism. On the other hand, the accuracy and 
the stability have been greatly enhanced by balancing the 
global optimal search memory and secondary search memory 
with the time-varying constriction factor. 

II. MODEL OF CARGO DELIVERY ASSIGNMENT AND FITNESS 

FUNCTION 

A. Problem Description and Model 

Assume that there is a fixed region where D cargoes are 
pending to be dispatched. The total flight range, maximum 
waiting time, power consumption, average waiting time of 
each UAV, maximum cargo capacity and other factors are 
taken into consideration. n UAVs scattered in k takeoff points 
are assigned to complete the delivery of the D locations in 
order. Each mission target is denoted as a three-dimensional 

spatial coordinate ( ), ,i i ix y z . Additionally, for flight safety, 

the aircrafts take off and cruise at a fixed height H over the 

buildings, then descend to the corresponding height iz of each 

mission target after reaching the destination ( ),i ix y . Then, 

UAVs return to the fixed flight altitude H and reach next task 
target in planned sequence after completing the current 
delivery. UAV contactless cargo delivery is achieved through 
the process above. 

 

Figure 1.  UAV cargo delivery system 

B. Cost Functions 

Resource consumption and cruising distance are measured 
with f1. The flight range of each aircraft while completing the 
dispatching mission in order and flying back to the airport is 
Li. 

1
1

n

i
i

f L
=

=                                        (1) 

To obtain a relatively short delivery time, a mission target 
average waiting time function is built to optimize the voyage 
time of each drone and elevate the delivery efficiency, where 
Li is the current UAV flight range and vi is the UAV cruising 
speed. 
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The UAVs are expected to conduct cargo delivery within 

maxwT . Once the expected time is exceeded during the 

dispatching process, extra compensation is provided from the 
relevant logistic platform for customers, and the overtime 
payout can be expressed as 

 max

max

0,             

,    
w

w

t T
count

payout t T


=
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                   (4) 
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C. Constraint Functions 

The constraint functions employed in this work are 
established in the form of a penalty function [17]. The weight 
value of the relevant term of the fitness function is indicated 
by the penalty factor, which can be set to a positive number 
that is sufficiently large to ensure that the desired constraint 
effect is achieved. 

The battery capacity is limited, and the maximum power 
consumption value cannot be exceeded during the whole 
dispatch process, or the landing is hard to be executed. 

                                ,maxi iBattery Battery                                              (6) 
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1
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1,      
i i

i i
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c

Battery Battery


=  

                            (7) 

where iBattery  is the accumulated battery consumption of 

each UAV, and the maximum power consumption of each 

drone is ,maxiBattery . 

The number of supplies carried during one mission is 
controlled within a fixed value.  

,maxi iLoad Load                               (8) 

,max

2
,max

0,     

1,      
i i

i i

Load Load
c

Load Load


=  

                         (9) 

where 𝐿𝑜𝑎𝑑𝑖 represents the amounts of supplies carried by 

each aircraft, ,maxiLoad  is the maximum quantity of supplies 

carried by one UAV. 

D. Fitness Functions  

The fitness function can be expressed as  

  11 1 2 2 3 3 4

P

p pF w f w f w f w c==  +  +  +               (10) 

where F denotes the value of the fitness function, f1, f2, f3 are 

the cost functions calculated by (1) to (5), 𝑤1, 𝑤2 and 𝑤3 are 

the weight coefficients, cp represents the cumulative number 

of penalty terms [17], P is the constraint amount, and 𝑤4 is the 

corresponding penalty factor, which can be set to a positive 

number that is large enough.  
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E. Encoding and Decoding Methods 

Since the basic formula of the TCMR-PIO is designed for 
continuous functions, a continuous encoding method is 
applied. Each UAV takes a number from 1 to n [17]. Each of 
the D destinations to be dispatched is represented by a real 
number in the range of 1 ≤ 𝑥𝑗 < 𝑛 + 1. The UAV serial number 
that completes the dispatch at this target mission location is 
decided by integer part, and the mission completion order is 
determined by the fractional part. The case of target number 
D=9 and UAVs n=4 is illustrated in Fig. 2. 

Index Xi is set for each target, and each index generates a 
random parameter in the range of (1, 5). After sorting, the 
order of task execution is determined, such as the index X6 and 
X8 in the figure, whose corresponding parameters are 2.45 and 
2.01 respectively, and the integer parts are 2. Therefore, task 
D8 is executed first by aircraft whose serial number is 2, then 
task D6 is performed in sequence. 

 

Figure 2.  Encoding and decoding process of task assignment 

III. TCMR-PIO: AN IMPROVED PIGEON-INSPIRED 

OPTIMIZATION MODEL  

In order to increase the success rate of UAV cargo delivery 
assignment as well as lower the overall resource consumption. 
A memory backtracking mechanism is proposed to increase 
the diversity of pigeon population, which is conductive for 
pigeons to escape from the local optimal destination. The 
accuracy of algorithm is improved by time-varying 
constriction factor as well.  

A.  Basic Pigeon-Inspired Optimization 

Inspired from the pigeon flock's ability to perceive the 
earth's magnetic field and the sun's altitude, pigeon-inspired 
optimization [13] is put forward in 2014. The flight direction 
of pigeons is guided towards to destination. In the next stage 
of the geomagnetic operator, when the pigeons are 
approaching the search target, the guidance from geomagnetic 
and the sun’s altitude for the pigeon flock is gradually 
weakened. At the same time, the information exchange in the 
flock will occupy the dominant position. The summarized 
formula is as follows 

( ) ( ) ( )( )1 1Rt
gbest ii iV t V t e rand X X t−= −  +  − −          (11) 

 ( ) ( ) ( )1i i iX t X t V t= +−                                  (12) 

where R is the map and compass factors, rand is a random 
number taking values in the range of (0,1), t is the value of 

newest iterations, and gbestX  denotes to the optimal position 

in the memory of all members in the flock after t rounds of 
search. The evolution lasts for T1 iterations. 

 
Figure 3.  Map and compass operator mechanism of PIO 

 

In the later stage of searching, the pigeon flock is led by 
individuals with deeper memory of the landmarks to locate to 
the optimal destination. After one iteration of evolution, few 
marginalized pigeons that are less acquainted with the 
landmark leave the flock. The updating process will last 𝑇2 
rounds of iterations until the whole group of pigeons find the 
best destination. 

( 1)
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( ) ( ) ( ) ( )( )1 1c ii iX t X t rand X t X t= − +  − −               (15) 

 
Figure 4.  Landmark operator mechanism of PIO 

B. Memory Retrospect Mechanism 

In the first stage of searching, the globally optimal position 
of the past experience in pigeons’ brain is recognized as the 
guiding direction for the next search to locate to the optimal 
destination in the searching range quickly. A memory 
retrospection mechanism of the pigeons is designed. The 
optimal solution of each round of search is stored in the pigeon 
brain. The median solution of the preoccupied 𝜀𝑚% optimal 
solutions will be regarded as the secondary search memory, 
which will decide the search direction together with the 
current global optimal search memory in next iteration. In this 
way, with the other feasible solutions as guidance, the flock’s 
ability to skip the local optimal solution and search for better 
destination is obtained. The parameter of the secondary search 
memory can be expressed as 

,          

,   
m

t
m m

t t T
N

T t T


 



=



 

  
                            (16) 
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2
tN

m =                                          (17) 

The map and compass operator function can be updated as 

follows 

( ) ( ) ( )( )

( )( )

1

2

1 1

1

Rt
gbest ii i

m i

V t V t e rand X X t

X X t





−= −  +   − −

+  − −
                (18) 

( ) ( ) ( )1i i iX t X t V t= +−                                   (19) 

where m  is the memory coefficient of the flock, 1  and 2  

are the activation coefficients for the global-best search 

memory and the secondary search memory, and Nt  is the 

secondary search memory space. 

C. Time-Varying Constriction  

Time-varying constriction factor can balance the 
contradiction between the two models in particle swarm 
optimization [18]. The influence of the globally optimal 
search memory and secondary search memory of the pigeon 
flock on the flight direction is balanced by the constriction, 
improving the global search ability further while enhancing 
the accuracy of the algorithm at the same time. The equations 
are as follows 

( )1max 1min1 1min
1

t
C C C C

T
= + −                           (20) 

( )2max 2min2 2min
1

t
C C C C

T
= + −                         (21) 

1 1 2 2C r C r =  +                                     (22) 

2

2

2 4


  
=

− − −                                  (23) 

where 1r  and 2r  take random numbers in the range of (0,1) 

respectively, 1maxC  and 1minC  are the maximum and 

minimum time-varying activation coefficient of the global 

optimal search memory respectively, 2maxC and 2minC  are 

the maximum and minimum time-varying activation 

coefficient of the secondary search memory as well, 1T  is 

iterations of map and compass operator, Coefficient χ is the 
time-varying constriction factor to balance the effects of two 
kinds of guidance calculated according to (23). 

The improved map and compass operator update functions 
can be expressed as follows 

( ) ( ) ( )( )

( )( )

1

2

1 1

1

Rt
gbest ii i

m i

V t V t e C rand X X t

C X X t

 −







=  −  +   − −

+ − −
      (24) 

( ) ( ) ( )1i i iX t X t V t= +−                             (25) 

IV. PROCEDURE OF UAV CARGO DELIVERY ASSIGNMENT 

VIA TCMR-PIO 

The UAV cargo delivery assignment approach optimized 
by our proposed TCMR-PIO algorithm is demonstrated in 
following steps: 

Step 1: Initialize the values of control variables in cargo 
delivery assignment model in section 2. 

Step 2: Input the parameters of our TCMR-PIO 
algorithm, and generate the original pigeon flock. 

Step 3: Update the location and velocity of pigeons 
according to (24)-(25), and calculate fitness values with 
(1)-(10). 

Step 4: Store optimal solution of each iteration of 
pigeon flock, and update secondary search memory. Check 

the iterations and return to Step 1 if 1t T . 

Step 5: Update the pigeon flock, and search for center 
pigeon together with position of each pigeon according to 
(13)-(15). 

Step 6: Select the optimal UAV cargo delivery 
assignment solution globally and individually. Check the 

iterations and return to Step 5 if 2t T . 

Step 7: Output globally optimal result as UAV cargo 
delivery assignment approach. 

V. SIMULATION RESULTS 

In order to test the application effect of the proposed 
TCMR-PIO algorithm for UAV cargo delivery assignment, a 
series of comparative simulation experiments are conducted in 
MatlabR2020a simulation environment.  

In the simulation, 5 different locations of takeoff points are 
available for UAVs with their center coordinates of (150, 150, 
0), (200, 300, 0), (350, 200, 0), (275, 400, 0), (400, 350, 0). 
The cruising height is set to 55m. 31 target locations are 
randomly gained at a certain distance from each other in three 
dimensions. The performance of TCMR-PIO is compared to 
results from PSO, PSO-DAIW [19], PIO, AWPIO [20], QPIO 
[21]. 

Coordinates of targets are listed in Table I. 

TABLE I.  COORDINATES OF DISPATCH TARGET LOCATIONS 

NO. 
Central 

Coordinate 
NO. 

Central 

Coordinate 
NO. 

Central 

Coordinate 

1 (130, 231, 10) 2 (363, 131, 3) 3 (417, 224, 7) 

4 (371, 139, 9) 5 (332, 155, 45) 6 (348, 153, 50) 

7 (323, 122, 36) 8 (419, 104, 17) 9 (431, 79, 2) 

10 (438, 57, 25) 11 (300, 197, 37) 12 (256, 175, 22) 

13 (278, 149, 17) 14 (238, 167, 47) 15 (133, 65, 7) 

16 (371, 167, 9) 17 (391, 219, 46) 18 (406, 237, 28) 

19 (378, 221, 50) 20 (367, 257, 25) 21 (402, 283, 47) 

22 (426, 293, 39) 23 (342, 190, 4) 24 (350, 376, 47) 

25 (339, 264, 36) 26 (349, 321, 28) 27 (295, 324, 12) 

28 (314, 350, 13) 29 (255, 235, 33) 30 (278, 426, 21) 

31 (230, 275, 16)     
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For the TCMR-PIO, 1maxC  = 2maxC  = 4.5, 1minC  = 

2minC  =1.5, R  =0.2. Parameters in PSO, PSO-DAIW 

algorithm are set to values [22], where 1c  = 2c  = 2.05, w = 0.8, 

maxw =0.9, minw  =0.4. The parameters of PIO, AWPIO, and 

QPIO algorithms are set to reasonable values while following 
the principle of comparison to control variables, where R = 0.2, 

maxw =4.5, minw  =1.5, 0P =0.05 .  

The simulation on each type of algorithm is repeated 20 
times under the same condition, and the initial population is 
set to the same. 

A. Comparative Simulation Results 

The variation of optimal values with the number of 

iterations for the six algorithms is illustrated in Fig. 5，where 

the results that succeed in completing task assignment are 
taken into consideration. It is obvious that the convergence 
speed of PIO, TCMR-PIO, AWPIO algorithms is much higher 
than QPIO. The basic PSO and PSO-DAIW have little 
difference in the initial speed of seeking the optimal value 
compared to TCMR-PIO, but are left behind in the late stage 
of evolution. 

 

Figure 5.  Comparison of algorithm convergence curves 
 

From Fig. 5, it can be concluded that TCMR-PIO has 
superiority over other algorithms on the aspects of 
convergence speed and fitness function value. For other 
algorithms such as the PSO and PSO-DAIW, it can be 
observed from the figure that the curves are still converging 
slowly when the number of iterations meets 350. The 
TCMR-PIO converges quickly when the number of pigeon 
generations reaches 50, stabilizing when the number of 
iterations reaches 200. The lowest final fitness function value 
among the six algorithms is also presented in the TCMR-PIO. 

The average value of the optimal solution, the optimal 
value, the standard deviation, and the average computing time 
are given in Table II. 

TABLE II.  STATISTICAL DATA 

Algorithm Average Optimal 
Computing 

Time 
SD 

PIO 140772.14 136050.84 25.58s 2887.18 

TCMR-PIO 124056.46 117533.81 17.25s 2463.04 

AWPIO 138454.70 132755.04 23.72s 4276.05 

QPIO 141800.71 123713.08 270.77s 7926.61 

PSO 132729.37 129649.02 18.00s 2594.53 

PSO-DAIW 132583.72 129722.23 16.44s 2466.60 

 

From the aspect of success rate of the task assignment 
scheme, the success rate in the basic PIO algorithm is 28.99%, 
in QPIO is 86.97%, while the other algorithms can produce 
task assignment schemes with the constraints at the percentage 
of 100%.  

On the one hand, it is obvious in Fig. 6 that our proposed 
TCMR-PIO algorithm can contribute to a sharp reduction in 
the mean and optimal values of 11.87% and 13.61% compared 
to the PIO algorithm, 10.40% and 11.47% compared to the 
AWPIO algorithm, 12.51% and 5.00% compared to QPIO, 
respectively. Compared to both of the PSO and PSO-DAIW 
algorithm, the average fitness values see a decreased by nearly 
7.00%, and the optimal value sees a decline of around 10.00%. 

 

Figure 6.  Comparison of average and optimal values 

On the other hand, from the statistical analysis in Table II, 
it is obvious that TCMR-PIO presents a better performance on 
the aspects of computation time, algorithm accuracy and 
stability. Computation time of TCMR-PIO is reduced by 
32.56% and stability is improved by 14.69% in comparison to 
the PIO algorithm. The computing time and stability sees a 
decline by 27.28% and 42.40% relative to AWPIO algorithm, 
respectively. Compared with QPIO, the computation time and 
the stability can be reduced by 93.63% and 68.93% 
respectively. Compared with PSO-DAIW algorithm, the 
TCMR-PIO algorithm performs slightly inferior in aspects of 
computation time, but it shows the best overall performance 
among all the other comparative algorithms. 

B. Task Assignment Scheme 

The UAV task assignment scheme given by TCMR-PIO is 
demonstrated in Fig. 7, where the locations of 5 takeoff points 
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are represented by red solid spots and 31 targets are shown in 
blue circle, distance between takeoff point to the first target 
destination is denoted as red arrow, the sequence of task 
completion is indicated as arrows in different colors. 

 

Figure 7.  Task assignment scheme from TCMR-PIO 

VI. CONCLUSION 

In this paper, a mathematical model of multi-UAV 

cooperative cargo delivery is established. An improved 

TCMR-PIO algorithm is developed, and a novel memory 

retrospection mechanism and reliable time-varying 

constriction factor is adopted in the improved PIO model. The 

comparative simulation results verified that the performance 

of the proposed TCMR-PIO algorithm is much better in 

searching optimal solution and convergence speed for UAV 

cargo delivery. 
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