
Velocity Control of Near Space Vehicle Based
on Enhanced Pigeon-Inspired Optimization

Meng Liu1, Qiang Feng1, Xingshuo Hai1,2(B), Yi Ren1, and Dongming Fan3

1 School of Reliability and System Engineering, Beihang University, Beijing 100191, China
haixingshuo@buaa.edu.cn

2 School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, Singapore

3 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

Abstract. The problem of near space vehicle (NSV) control has aroused
widespread concern in recent years. However, optimal control parameters are not
easy to obtain which still remains a pressing challenge. This paper addresses the
issue of NSV control parameters optimization. First, the velocity control method
based on an active disturbance rejection control (ADRC) technique for the longi-
tudinal nonlinear model of the NSV is given. Then, an enhanced pigeon-inspired
optimization algorithmwith a golden-sinemutationmechanismand an opposition-
based learning strategy (GOPIO) is presented to achieve control parameter opti-
mization. A case study is conducted to prove the validity of the proposed method.
Simulation results indicate that the local search ability is strengthened in GOPIO
compared with traditional algorithms.
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1 Introduction

Near space vehicle (NSV) has the advantages of low maintenance cost and multi-task
processing capability, which make it widely applied in military and civilian fields. How-
ever, compared to existing atmosphere vehicles, the environment without air convection
posed a great challenge to the flight control of NSV [1]. Moreover, NSV has highly
nonlinear dynamics characteristics due to the strong coupling relationship between the
body, propulsion system and structural dynamics, which also increase the difficulty of
flight control. Velocity has a great impact on the attitude of the NSV and its control
performances directly affect the flight quality [2]. Therefore, the improvement of the
flight control of NSV has become a subject that needs to be further investigated.

In recent years, various control methods have emerged in order to achieve better
performances of NSVflight control problems. Zhao et al. [3] designed an attitude control
system under engine faults. Xia et al. [4] studied the strategy for the flight control of
NSV based on a disturbance observer, which effectively reduces the impact of external
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disturbances. Guo et al. [5] proposed an adaptive attitude control method that improved
system tracking performances by avoiding computational scaling. Almost all of the
methods discussed above cannot avoid the problem of parameters adjustment, which is
a critical issue that greatly affects the performances of the controller [6].

In general, the adjustment of control parameters is regarded as an optimization prob-
lem [7]. Aiming to find a more suitable matching method for optimal control, Agamawi
et al. [8] investigated four derivative and differential methods. Gui et al. [9] solved the
reaction control system problem with an improved particle swarm optimization (PSO)
algorithm. As a matter of fact, the same control method may lead to different results by
applying different parameter adjustment approaches. As an efficient technique, heuristic
algorithms play an important role in solving the problems of control parameters opti-
mization. A proper method to optimize the parameters of the controller of NSV will
improve the control performances and its applications.

By imitating the behavior of the pigeon swarm, pigeon-inspired optimization (PIO)
algorithm has shown effectiveness in various scenarios [10]. Feng et al. [11] presented an
optimization method of formation reconfiguration with an enhanced PIO algorithm for a
multi-UAV system. Hai et al. [12] proposed a PIO with game theory for the main control
parameters of mobile robot. Xu et al. [13] combined PIO with quantum rules to control
the curved paths for underwater snake robot, which reduced the energy loss effectively.
However, the solution accuracy of PIO is a concern for complex multi-dimensional
optimization problems. In the vicinity of the local optimal solution, it is difficult to
adjust the optimization direction appropriately, which is one of the shortcomings of
the algorithm. In the domains of control and navigation of an aircraft, the property of
fast convergence is necessary [14]. Thus, the advantage of extremely fast convergence
makes it stand out, but also brings the risk of precocity [15]. In order to improve the
performance of PIO and realize better velocity control of NSV, the improvement of the
algorithm is ought to be designed.

2 Velocity Control with GOPIO

2.1 Velocity Control Model for NSV

At present, numerous controllers have shown effectiveness on velocity active disturbance
rejection control for NSV. In [16], when the height command remains unchanged and
the speed command is a step command, the overshoot fO, rise time fR, settling time
fSet , steady accuracy fS and elevator command integration fI are used as the evaluation
indicators of the step response. The objective function can be calculated by:

fitness = w1fO + w2fR + w3fSet + w4fS + w5fI (1)

fO = max
t>0

∣
∣
∣
∣

V (t)

Vc(t)

∣
∣
∣
∣

(2)

fR = t2|V (t2)=0.9 − t1|V (t1)=0.1 (3)

fSet = max{ t|0.05Vc ≤ |V (t) − Vc|} (4)
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fS =
∫

t>fSet
|V (t) − Vc| (5)

fI =
∫

β (6)

where, Wi, i = 1~5 is used to measure the importance of each objective. Particularly,
the weight coefficient w4 should be larger to guarantee the stability of the response.

2.2 Overview of PIO

By imitating the behavior of pigeons, two main operators make up the traditional PIO.
One is the map and compass operator which conducted in the first phase that uses the
information of best position in the population. As a result, the process of finding an
optimal solution is guided by the best position. The other is the landmark operator
which is executed in the later of optimization. In this operator, the number of pigeons
decreases sharply and moves closer to the center of the swarm.

In map and compass operator, the velocity V and the position X of a pigeon i at t
iteration are computed as follows.

Vi(t) = Vi(t − 1) ∗ e−Rt + rand(Xg − Xi(t − 1)) (7)

Xi(t) = Xi(t − 1) + Vi(t) (8)

where, Xi = [xi1, xi2, ..., xiD], Vi = [vi1, vi2, ..., viD], rand is a random number between
0 and 1, Xg denotes the current bestposition in the population, R is the map and compass
factor, and D is the dimension of the problem respectively.

In landmark operator, the number of pigeonsNnum(t) decreases rapidly. As iterations
t increases, they converge to the center of the population where the position and velocity
are obtained by

Xcenter(t − 1) =
∑Nnum(t−1)

i=1 Xi(t − 1) ∗ fitness(Xi(t − 1))

Nnum(t − 1) ∗ ∑Nnum(t−1)
i=1 fitness(Xi(t − 1))

(9)

Nnum(t) = Nnum(t − 1)

2
(10)

Xi(t) = Xi(t − 1) + rand(Xcenter(t − 1) − Xi(t − 1)) (11)

where, fitness (Xi) is the fitness value for pigeon i. Xcenter represents the center position
of the swarm.

Clearly, the information of all pigeons is not fully utilized in the early stage. In fact,
any pigeon may possess the best position during the iterative procedure. However, the
mechanism in traditional PIO limits the capacity of the algorithm to search for a better
position of other pigeons. In addition, the rapid decline in quantity of the pigeons will
also results in a local optimum easily.
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2.3 The Enhanced PIO with Golden-Sine Mutation and Opposition-Based
Learning

To address the issue of PIO, a golden-sinemutationmechanism and the opposition-based
learning strategy are applied to improve the performance of the algorithm.

Golden-Sine Mutation. Golden sine mutation can be used as a local search method
to make pigeons search in a small area around their current location. In the two core
operators of PIO, the specific implementation of mutation is shown in the following
formula.

Xmu
i (t) = Xi(t) ∗ |sinR1| + R2 ∗ sinR1 ∗ ∣

∣x1 ∗ Xg − x2 ∗ Xi(t)
∣
∣ (12)

where, R1 ∈ [0, 2π ],R2 ∈ [0, π ]. Both R1 and R2 are random number. x1 and x2 are the
coefficient obtained by introducing the golden ratio.

x1 = −π + (1 − τ) ∗ 2π

x2 = −π + τ ∗ 2π

τ = √
5 − 1/2

(13)

Obviously, τ is the golden ratio. The mutation process takes place after each normal
iteration of the pigeon. A greedy rule is introduced to determine whether to accept a
mutated solution. The specific rules are shown in the following formula.

{

Xi(t) = Xi(t), if fitness(X
mu
i (t)) < Xi(t)

Xi(t) = Xmu
i (t), if fitness(Xmu

i (t)) ≥ Xi(t)
(14)

The introduction of golden-sine mutation has many advantages. On the one hand,
the chance of finding a better position each pigeon is increased. On the other hand, it will
not deviate from the optimal direction of the pigeon group due to the excessive moving
range.

Opposition-Based Learning. Golden-sine mutation is more helpful for local search,
but it has less improvement in population diversity. Therefore, when PIO is trapped in
a local optimal solution, an effective method should be given to adjust the direction of
optimization by enhancing the swarmdiversity. It has been demonstrated that opposition-
based learning can effectively improve the diversity and quality of populations [17]. As
one of the approaches, stochastic opposition-based learning is suitable for a variety of
heuristic algorithms.

In map and compass operator, pigeons with poor fitness values are still need to
search for a better position. It is unnecessary to execute opposition-based learning by all
pigeons in this stage. On the contrary, a pigeon in a better position has a greater risk of
falling into a local optimum, and a greater probability of a better reverse solution. Thus,
the elite opposition-based learning strategy can be a feasible method at this stage. For
a population consists of Nnum pigeons, individuals with Nnum/4 fitness value rankings
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are defined as elites in which opposition-based learning is carried out in each iteration
as follows:

XObl
i (t) = Lb + Ub − rand ∗ Xi(t),∀ elite pigeon i (15)

where, XObl
i (t) is the opposite solution for i elite pigeon in t generation. Lb and Ub

denote the lower and upper bounds of the variables, respectively.
In landmark operator, all pigeons optimize their position according to the following

formula:

XObl
i (t) = Lb + Ub − rand ∗ Xi(t),∀i = 1, 2, ...,Nnum(t) (16)

Whether the learned solution is accepted or not is determined by the greedy rule.
{

Xi(t) = XObl
i (t), if fitness(XObl

i (t) < Xi(t)

Xi(t) = Xi(t), if fitness(X
mu
i (t)) ≥ Xi(t)

. (17)

By utilizing the random opposition-based learning, the search space of a pigeon is
expanded, especially in the later optimization process to find better solution, it is helpful
to adjust the optimization direction.

Based on golden-sine mutation and opposition-based learning, an enhanced PIO
named GOPIO is proposed. The specific implementation process of the algorithm is
shown as follows.

Step 1: The GOPIO algorithm starts.
Step 2: Initialization of population and parameters.
Step 3: Execute the map and compass operator.
Step 4: Execute golden-sine mutation.
Step 5: Execute opposition-based learning for elites.
Step 6: Determine whether the number of iterations meets the requirement. If yes, go to
Step 7. Otherwise, turn to Step 3.
Step 7: Execute the landmark operator.
Step 8: Execute opposition-based learning for all pigeons.
Step 9: Determine whether the number of iterations meets the requirement. If yes, go to
Step 10. Otherwise, turn to Step 7.
Step 10: Output the optimal solution.
Step 11: The GOPIO algorithm ends.

Among them, the maximum iteration requirements in Step 6 and Step 9 are the same
as those in the two phases of traditional PIO. Figure 1 shows the specific process of
GOPIO algorithm.
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Initialization of population and parameters

Start

Execute the map and compass operator

Execute golden-sine mutation

Is the current iterations greater 
than max iterations?

Execute the landmark operator

Is the current iterations greater 
than max iterations?

Output optimal solution

End

Yes

Yes

No

No

Execute opposition-based learning for elites

Execute opposition-based learning for all 
pigeons

Fig. 1. The flow diagram of the GOPIO

3 Example Analysis

The six main parameters of the controller designed in reference [16] are optimized. For a
certain NSV that needs velocity control, the initial state is conditions is given by Table 1.

Table 1. Initial conditions

Height Angle of attack Angle of pitch Velocity

33528 m 0.0378 rad 0.0378 rad 4590 m/s

Meanwhile, some other optimization algorithms, such as traditional PIO, differen-
tial evolution algorithm (DE), and particle swarm optimization (PSO), are selected to
compare with GOPIO. The parameters of various algorithms are set as shown in Table 2.

The comparative evolutionary curves are shown in Fig. 2 to prove the superiority of
GOPIO.
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Table 2. Algorithm parameter description

Algorithm Parameter setting Value

PIO Max iterations for map and compass operator 10

Max iterations for landmark operator 5

Map and compass factor 0.3

GOPIO Proportion of elites 0.25

PSO Inertia weight 0.5

Self-best factor 2

Global best factor 2

DE Scaling factor 0.6

Cross constant 0.5

In common The maximum number of iterations 15

Population size 20

Fig. 2. Comparative evolutionary curves

As can be seen from Fig. 2, DE and GOPIO perform well in the parameter optimiza-
tion of velocity loop and find satisfactory solutions, while PSO and PIO fall into local
optimums. In particular, GOPIO shows the best convergence performance, but it also
has the problem of convergence speed lag. Thus, GOPIO effectively improves the solu-
tion accuracy by utilizing the golden-sine mutation mechanism and an opposition-based
learning strategy.
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Based on the optimization results of our proposed GOPIO algorithm, the state
response of velocity can be further shown in Fig. 3. Note that the input command is
set to Vc = 4650 m/s.

Fig. 3. The state response of velocity.

The comparative results obtained through 20 runs are listed in Table 3.

Table 3. Solution result comparison

Algorithm Best fitness Worst fitness Average fitness

PSO 120.38 136.24 123.89

PIO 118.75 127.33 122.04

DE 85.53 94.36 86.65

GOPIO 83.04 87.53 84.19

As shown in Table 3, the best, worst, and average fitness values are given which
further demonstrate the feasibility and effectiveness of GOPIO. It has great advantages
for the optimization of NSV velocity control parameters.

4 Conclusion

In the interest of the control parameters optimization of NSV, an enhanced PIO algorithm
based on golden-sine mutation and opposition-based learning (GOPIO) is presented.
On the basis of the ADRC technique, a better control performance for the longitu-
dinal nonlinear model is obtained. Besides, in the process of parameter optimization,
GOPIO is compared with other well-known algorithms under the same condition. Sim-
ulation results including the evolutionary curves and the time-domain response verify
the feasibility and effectiveness of our proposed method.
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