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Data collection is the basic purpose of deploying in heterogeneous WSNs for Internet of things, and the problem of data collection
is the key problem that needs to be solved in heterogeneous WSNs. How to collect energy-efficient and reliable data is one of the
key technologies of heterogeneous WSNs. Collecting the sensor node data by mobile sink is an effective measure to solve data
collection efficiency. To this end, a data collection strategy of mobile sink for heterogeneous WSNs based on pigeon-inspired
optimization by PSO algorithm is proposed. The proposed algorithm uses the improved pigeon-inspired optimization by
particle swarm optimization algorithm to select the best dwell point and then regards the construction of the moving path
based on the dwell point as a traveling salesman problem to optimize the moving path and solve the optimal moving path.
The experimental analysis and simulation results show that, compared with other algorithms, the algorithm proposed in this
paper can effectively prolong the lifetime of the network and reduce the delay of data collection, increasing the amount of data
collection.

1. Introduction

With the rapid development of information technology and
Internet of things, wireless sensor networks (WSNs) have
been widely used in environmental monitoring, industrial
production, intelligent agriculture, intelligent transportation
systems, rehabilitation medicine, and other applications
[1–3]. As a key technology in the field of data collection, it
is now also the basis for big data and artificial intelligence
technologies. In traditional heterogeneous WSNs, the data
forwarding between sensor nodes usually adopts a multihop
approach [4, 5]. However, due to the large amount of data
forwarded from other nodes, the sensor nodes near sink
are prone to die due to excessive energy consumption,
resulting in the interruption of the network link [6, 7]. At
the same time, these sensing nodes are micronodes, which
are generally powered by batteries. Their node energy is lim-
ited, and the transmission of sensing data requires multiple
hops, which limits the application of WSNs [8]. To avoid
this problem, researchers propose a mobile sink data collec-
tion method [9]. The mobile sink moves according to a cer-

tain path in the monitoring area. It is not advisable to move
the sink to visit every sensor node [10]. How to plan the path
of moving sinks in the sensing area of heterogeneous WSNs,
so that the sensing data passes through fewer hops and is
collected to sink nodes within a limited delay, becomes a
challenge.

The core problem of this paper is how to use the mobile
sink to collect data efficiently and reliably for heterogeneous
WSNs [11]. In order to better achieve the goal, we need to
save network energy, extend the network life cycle, and
reduce network latency [12]. To this end, the following two
algorithms according to the number of mobile sinks are pro-
posed. A data collection strategy for heterogeneous WSNs is
based on a single mobile sink. The main work of this paper is
as follows: A data collection algorithm based on a single sink
is proposed. The algorithm is divided into two different
stages: clustering and path planning. (1) In the clustering
stage, the average residual energy of network nodes and
the distribution density of neighbor nodes are considered.
(2) In the path planning stage, for the selected number of
N cluster head nodes, the mobile sink will traverse the
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position of each cluster head according to the planned path
to collect data. The mobile sink adopts pigeon-inspired opti-
mization by PSO algorithm for path planning. The Euclid-
ean distance between cluster heads is used as the weight,
and the optimal path is found on the basis of the minimum
spanning tree formed by all cluster heads. Since some nodes
of the obtained minimum spanning tree have multiple con-
nection paths, the idea of the PSO-PIO algorithm is to delete
multiple branches of a node and reconnect all nodes. There
is only one path in the entire area, and each cluster head is
only passed through once, so as to obtain the shortest path
for moving the sink, so that the network has the shortest
delay in data collection.

In traditional heterogeneous WSNs, usually adopts a
multihop approach. However, due to the massive forwarding
of data from other nodes, the nodes located near the sink are
prone to die due to excessive energy consumption, resulting
in network link interruption. At the same time, these sensing
nodes are micronodes, which are generally powered by bat-
teries. Their node energy is limited, and the transmission
of sensing data requires multiple hops, which limits the
application of WSNs. To avoid this problem, a mobile
sink-based data collection method of heterogeneous WSNs
is proposed. The mobile sink starts from a certain point,
visits each node, and completes the task of data collection.
Such a process can generally be viewed as the traveling sales-
man problem. Solving the path planning strategy of moving
sink is an NP-hard problem. The PIO algorithm performs
search calculation and problem solving according to the
unique homing behavior of the pigeon flock. Through the
experimental analysis of the heterogeneous WSNs data col-
lection method of the PSO-PIO algorithm and the compari-
son with other algorithms, the algorithm can effectively
prolong the lifetime of the network and reduce the delay of
data collection.

2. Related Work

In traditional heterogeneous WSNs, the nodes transmit data
to a fixed base station in a multihop manner, which easily
causes nodes near the base station to participate in excessive
data forwarding. The researchers propose a data collection
scheme of mobile sink. The coordination network formed
between UAVs and WSNs helps to improve the quality
and coverage. Combined with the UAV maneuverability
model, a data collection model combining UAVs and wire-
less sensor networks is established. The model considers
the importance of topology and strategic location to deter-
mine UAV waypoints and determine data transfer patterns.
Sayeed et al. proposed a new maneuverability of attraction
factor of UAV moving waypoints [13]. Data loss and latency
in cluster heads are caused by energy consumption and
duplication of work. Cluster members send data from the
threshold model to the cluster head. Cluster heads collect
data from mobile sinks and report to receivers when data
arrives nearby [14].

The data collection scheme of heterogeneous WSNs
based on the mobile sink mainly includes fixed movement,
random movement, and controlled movement.

2.1. Random Movement. In random movement, the path of
moving the sink is not set in advance. For example, if the
node is placed on an animal, the movement trajectory of
the animal is random, although this scheme is easy to imple-
ment [14, 15]. The remaining energy and position of nodes
are the main parameters for selecting cluster heads. A con-
trol strategy for mobile receivers to collect data from cluster
heads is designed [16]. Movement trajectory planning of
mobile agents has been receiving much attention. Based on
the traversal sequence, the mobile agent uses the particle
swarm algorithm to select anchor nodes for each CHs within
the communication range. The communication range is
dynamically adjusted, and anchor nodes are merged in
duplicate coverage areas to further improve performance
[17]. In MWSN, the nodes enter and exit the network ran-
domly, and due to the limited resources in WSNs, the link
quality of the path used for data transmission and the time
consumed by data forwarding must be tested [18].

2.2. Fixed Movement. In fixed movement, mobile sinks visit
some prespecified locations along a fixed route and collect
data from groups of sensor nodes. Kumar et al. proposed
an efficient algorithm to improve the data collection process,
using a network flow approach to achieve efficient data for-
warding [19, 20]. According to the traveling salesman prob-
lem (TSP), the mobile actor tour program passes through
these rendezvous points. We also propose a new rendezvous
node rotation scheme to equitably utilize all nodes [21]. In
resource-constrained wireless sensor networks, energy sav-
ing is a key issue. The use of mobile receivers to transmit
sensory data has become a common method to save the lim-
ited energy of sensors. Agrawal et al. proposed a mesh
round-robin routing protocol (GCRP), which aims to mini-
mize the overhead of updating the latest location of mobile
receivers. A set of sharing rules is also proposed to govern
when and with whom mobile sinks share the latest location
information of receivers [22].

2.3. Controlled Movement. Controllable movement means
that path planning can be performed according to the infor-
mation fed back by the path [23]. Ren et al. proposed a
mobile sink reliable data acquisition algorithm; this method
greatly improves the efficiency of network work. [24].

In summary, solving the mobile sink path planning strat-
egy is an NP-hard problem, such as node energy and node
density. The pigeon flock algorithm performs search calcula-
tion and problem solving according to the unique homing
behavior of the pigeon flock, and the PIO algorithm provides
an effective approach.

3. Mathematical Model of Data Collection

The data collection of heterogeneous WSNs is mainly based
on clustering data method, and its main content is to divide
the network hierarchically. The entire network is divided
into several cluster heads, and adjacent nodes are in one
cluster [25]. Each cluster will choose a node as the cluster
head, and all communications in the network are transmit-
ted in the backbone network [26]. Compared with other
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routing protocols, the clustering algorithm pays more atten-
tion to balancing the energy consumption, avoiding hotspot
problems.

Although the mobile sink scheme can effectively
improve the data collection rate, there is still a problem that
must be solved in this scheme: the planning of the moving
path of the sink. Obviously, with different moving paths,
the data collected by nodes may be different, and the net-
work energy consumption will also be different. Therefore,
how to plan the movement of the sink is the key technology
of the data collection scheme based on the mobile sink.

At present, there are two strategies to plan the move-
ment path of the sink: (1) The mobile sink traverses the
entire area within the network. (2) Moving sink only tra-
verses some preset positions; these positions are called resi-
dent point rendezvous points (RPs). Compared with the
first strategy, the path planning strategy citing RPs is more
efficient and consumes less energy. The collection process
of mobile sink based on RPs heterogeneous WSNs is shown
in Figure 1. Mobile sinks form data collection paths by tra-
versing RPs.

Mathematical model of mobile sink data collection for
heterogeneous WSNs based on resident points rendezvous
points (RPs):

The number of n nodes fs1, s2, s3,⋯, sng is deployed in
the monitoring area of l × l. Let si denote the i-th sensing

node, and 1 ≤ i ≤ n. Each moving path of MS consists of
the number of κ RPs, where κ < n. к RPs constitute the set
of RPs Q = fq1, q2, q3,⋯∣, qкg.

Let the parameter TP denote a moving path of the MS,
which consists of К RPs. The sequence of paths TP is TP =
fq1, q2, q3,⋯, qкg. Use the following formula to calculate
the length of the path TP :

L TPð Þ = d12+⋯+dκ1, ð1Þ

where the parameter dij represents the distance between qi
and qj traversed in the path.

The data collection method for heterogeneous WSNs
aims to minimize the path TP length and satisfy the con-
straints of data transmission delay and data volume. Let
the parameter DT

P denote the time delay for the sink node
to collect data along the path TP, and define the parame-
ter DT

P by Dmax. That is where the parameter Dmax repre-
sents the maximum delay allowed. Furthermore, let the
parameter B denote the maximum data capacity allowed
by the channel. The data transmitted by RP to the sink
node each time should be less than B. Therefore, Wout

k
≤ B, where the parameter Wout

k represents the amount
of data transmitted by the k-th RP to the sink node in
each round.

Sensor Node

Sink Path

Cluster Node Routing Path

Mobile Sink

Heterogeneous node

Sensor Node

Sink Path

Mobile Sink

Heterogeneous node

Figure 1: Data collection process of mobile sink based on RPs.

3Wireless Communications and Mobile Computing



Finally, the objective function for establishing the data
collection of heterogeneous WSNs based on path planning
is as follows:

min L TPð Þ, ð2Þ

s:t: DT
P ≤Dmax, ð3Þ

Wout
k ≤Dmax, 1 ≤ k ≤ κ: ð4Þ

However, solving the mobile sink path planning strategy
for RPs is an NP-hard problem, which is affected by multiple
factors, such as node energy and node density. The pigeon
flock algorithm performs search calculation and problem
solving; according to the unique homing behavior of the
pigeon flock, the pigeon-inspired optimization algorithm
provides an effective new approach. Therefore, a mobile sink
data acquisition algorithm based on PIO optimization by
PSO algorithm is proposed, and the sink moves according
to these resident points to form the optimal data transmis-
sion path.

4. Pigeon-Inspired Algorithm Optimization by
Particle Swarm Optimization

4.1. Pigeon-Inspired Optimization Algorithm. Pigeon-
inspired optimization (PIO) algorithm was proposed by
Duan Haibin [27]. The design inspiration of the pigeon flock
algorithm comes from the unique homing behavior of the
pigeon flock [28, 29]. The algorithm mainly finds the global
optimal solution of the optimization problem by simulating
the navigation behavior of the pigeon flock. According to the
behavior of pigeons in the process of homing, there are three
key reference factors for their main navigation, which are
[30] as follows: (1) the influence of the sun on the pigeon’s
homing and its navigation ability depend on the position
of the sun; (2) the influence of geomagnetic field on pigeons
[31]; the upper beak of pigeons contains a magnetic induc-
tion structure, which plays an important role in indicating
the flight of pigeons. and (3) the influence of terrain land-
marks on pigeon navigation and similar terrain will speed
up the homing process of pigeons [32].

The homing navigation of the pigeon flock is mainly car-
ried out in two ways. At different flight positions, pigeons
will use different navigation tools. They should refer to the
geomagnetic field to determine the direction [33]. Use iconic
landmarks to navigate when they close to the destina-
tion [34].

Initialize a pigeon group with M individuals in the
D-dimensional space; the position of the i-th ði = 1, 2, 3,⋯,
MÞ pigeon in the population is represented by Xi = ðX1

i , X2
i ,

X3
i ,⋯,XN

i Þ; the speed of the i-th pigeon is represented by Vi

= ðV1
i , V2

i , V3
i ,⋯,VN

i Þ; and the fitness of the pigeon is repre-
sented by the function fitnessðXN

i Þ, the geomagnetic compass
operator is marked as NMAX1, and the landmark operator is
marked as NMAX2. Each pigeon is based on the geomagnetic
compass operator [35, 36]:

VN
i =VN−1

i ∗ e−RN + rand XG − XN−1
i

� �
, ð5Þ

XN
i = XN−1

i + VN
i , ð6Þ

XN
C = ∑M Nð Þ

i=1 XN
i F XN

i

� �
M Nð Þ∑M Nð Þ

i=1 F XN
i

� � , ð7Þ

XN
i = XN−1

I + rand XN−1
C − XN−1

i

� �
, ð8Þ

F XN
i

� �
=

1
fitness XN

i

� �
+ ε

, Min − os

fitness XN
i

� �
, Max − os

8><
>: , ð9Þ

M Nð Þ = M N−1ð Þ

2 , ð10Þ

where the parameter XN
C is the center position after the N-th

iteration, which is identified as a landmark. FðXN
i Þ is the

fitness function. For solving Min − os (minimum optimal
solution), Max − os (maximum optimal solution) has two
different forms, and MðNÞ is the number of pigeons remain-
ing after the N-th iteration [37, 38]. After the above iteration
loop reaches NMAX2, the landmark operator stops working
and outputs the optimal solution adapted at this time [39].

4.2. Pigeon-Inspired Algorithm Optimization by PSO. The
PSO algorithm is a novel optimization algorithm proposed
in recent years. There are not many studies on it at present.
The advantage of PSO-PIO algorithm is that the PSO algo-
rithm with fast convergence speed in the early stage can
quickly lock the region where the optimal solution is located
and sets up diversity monitoring. After the diversity drops to
a certain level, the PIO algorithm performs a locked area
search to quickly find the optimal solution.

4.2.1. The PSO Algorithm. The mathematical model of article
swarm optimization (PSO) is as follows [40]: Assuming that
there are S particles in a random distribution state in the D
-dimensional space, let the coordinates of the i-th particle
in the population be

xNi = xNi1, xNi2, xNi3,⋯, xNiD
� �T

: ð11Þ

After N iterations, the optimal coordinate of the i-th par-
ticle is

pNi = pNi1, pNi2, pNi3,⋯, pNiD
� �

: ð12Þ

The optimal coordinates of the swarm particles are

pNgbest = pNgbest1, pNgbest2, pNgbest3,⋯, pNgbestD
� �

: ð13Þ

The velocity of the i-th particle is

vNi = vNi1, vNi2, vNi3,⋯, vNiD
� �T

: ð14Þ

After N + 1 iterations of the particle, its own velocity and
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position are updated as

vN+1
id = ωNvNid + c1r1 pNid − xNid

� �
+ c2r2 pNgbest,d − xNid

� �
, ð15Þ

xN+1
id = xNid + vNid , ð16Þ

ωN = ωMAX − ωMINð Þ vNmax −N
vNmax

� 	
+ ωMIN, ð17Þ

where ω is the dynamic inertia factor, c1 and c2 are the learn-
ing factors, r1 and r2 are random numbers between [0,1],
ωMAX is the maximum value of the factor, ωMIN is the min-
imum value, and vmax is the speed [41].

4.2.2. Particle Swarm Algorithm with Jump Operator. In the
later iteration of particle swarm optimization, the optimal
coordinates will be limited to the local area. To this end,
an adaptive jump operator is added to compare the similar-
ity between the optimal coordinates of individual particles
and the optimal coordinates of group particles. Given the
particles of different jump probabilities, after the N-th itera-
tion, the probability formula and jump formula for thei-th
particle to jump out of the current position are

p = exp f pNgbest
� �

− f pNi
� �� �

, ð18Þ

xNi = xNi + rand × ub − lbð Þ,   ð19Þ
where the parameter rand is between [0,1] and parameters
ub and lb are upper and lower limits.

4.2.3. Pigeon Flock Algorithm with Interference Operator. In
practical problems, the PIO algorithm also has a limited
number of iterations that are prone to local optimal solu-
tions. This phenomenon is particularly serious when solving
optimization problems of complex functions. Tn interfer-
ence operator is introduced:

pert Nð Þ = 0:1 × rand × 1 − N
Nmax

� 	
, ð20Þ

XN
i = XN

i + pert Nð Þ × ub − lbð Þ × r1 − r2ð Þ, ð21Þ
where the parameters rand, r1, and r2 are random numbers
on [0,1] and the parameter pertðNÞ is the interference
operator.

4.2.4. Particle Swarm and Pigeon Swarm Hybrid
Optimization Algorithm (PSO-PIO). The PSO-PIO algo-
rithm redefines a diversity function.

div Nð Þ = σN

σmax
, ð22Þ

σN = 1
m
〠
m

i=1
lNi − lNave

� �2
, ð23Þ

σmax = max
j∈ 1,2,⋯,Nf g

σ j


 �
, ð24Þ

where the parameter j is the j-th iteration. The parameter
σ j is the variance of the j-th generation population. The

parameter lNi is the distance between the population parti-

cle, and the optimal particle after N iterations, lNi =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑D

d=1ðXN
i − pNgbestÞ2

q
, the parameter D is the dimension.

The parameter lNave is the average Euclidean distance
between the population particle and the optimal particle
after N iterations, lNave = 1/m∑m

i=1l
N
i .

The solution process of the PSO-PIO algorithm mainly
includes two steps: The first step uses the particle swarm
algorithm with a jump operator to perform a preliminary
search, and when the diversity function drops to a certain
threshold, it goes to the second step. Further optimal solu-
tions are performed using the landmark operator of the
pigeon colony algorithm with disturbance operator. The
algorithm adopts the PSO algorithm with fast convergence
speed in the early stage to quickly lock the region where
the optimal solution is located and sets up diversity monitor-
ing. After the diversity drops to a certain level, the interfer-
ence algorithm PIO algorithm is used to search the locked
area to quickly find the optimal solution. The implementa-
tion process is shown in Figure 2.

The basic steps of PSO-PIO algorithm are as follows:
Step 1. Initialization algorithm parameters. The popula-

tion m, the space dimension D, the inertia factors ωMAX
and ωMIN, the learning factors c1 and c2, and the maximum
number of iterations NMAX.

Step 2. According to the fitness function, mark the indi-
vidual optimal solution pi and the current global optimal
solution pgbest.

Step 3. According to the PSO algorithm, gradually calcu-
late the new position and new speed of each particle, com-
pare the similarity between the particle’s pi and pgbest, and
calculate the particle’s jump probability p, and set the ran-
dom number p0 ∈ ½0, 1�. If p > p0, the particle jumps out of
the current position according to the jump formula; other-
wise, it stays at the current position to calculate pi and
pgbest for the next round.

Step 4. Use the diversity function to evaluate the diver-
sity level of the population, and judge whether the diversity
div ðNÞ is less than the set diversity threshold. If it is less
than the set diversity threshold, terminate the PSO algo-
rithm, enter the pigeon flock algorithm ,and go to step 5;
otherwise, go to step 3.

Step5. Enter the landmark operator of the PIO algorithm
with interference operator, and calculate the center position
xC of the population through the center position calculation
formula (3).

Step 6. Update the center position xC of the population
and the position of each individual according to the land-
mark operator of the PIO algorithm, and calculate the prob-
ability pert according to the interference operator, determine
the update position, and repeatedly calculate the particle
position for the next iteration.

Step 7. Whether N is greater than NMAX, if so, terminate
the algorithm and output the result, otherwise go to step 6.
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5. Data Collection Strategy of HWSNs Based
on PSO-PIO

The main process of the data collection method of heteroge-
neous WSNs based on the PSO-PIO algorithm is as follows:

5.1. Improvement of SEP Clustering Algorithm. The traditional
SEP clustering algorithm is improved, and the threshold func-
tion is optimized based on the average residual energy factor
and the distribution density factor of neighbor nodes.

5.2. Path Planning Strategy Based on PSO-PIO Algorithm.
After clustering in the first section and selecting cluster
heads (residence points RPs), the mobile sink will traverse
the positions of each cluster head according to the planned
path to collect data. The minimum spanning tree of the back-
bone network composed of the entire nodes. Once the resident
point RPs are selected, constructing the movement trajectory
according to the RPs is a traveling salesman problem (TSP).

In order to ensure that the moving path of sink is opti-
mal, that is, the mobile sink moves from the first cluster head
to the last one, and each cluster head passes through only
once during the movement. The proposed PSO-PIO algo-
rithm can obtain the optimal mobile sink path planning

strategy, and the PSO-PIO algorithm optimizes the edges
and nodes in the minimum spanning tree, so as to obtain
the optimal path of sink.

Start

Initialize the population
position and speed parameters,

and give the algorithm
parameters

Calculate the individual
optimal value pi and the group

optimal value pgbest

The new position and new
speed of each particle are

gradually calculated, and the
jump probability p of the

particle is calculated.

P > P0 ?
Update individual

positions according
to the jump formula

div < Threshold ?

Assessing the level of
population diversity using

a diversity function div

Enter the landmark operator of the
PIO algorithm, and calculate the
center position xC through the

center position calculation formula

The landmark operator calculates
and updates the position of the

individual and updates the center
position of the population xC

Calculate the probability pert of
the interference operator

Pert > P0 ?
Update individual

locations according to
the interference formula

Nmax < N ?

End

Y

N

Y N

Y

N

Y

N

Figure 2: The workflow of the PSO-PIO algorithm.

Table 1: Simulation environment parameter setting.

Parameter Value

Network range 1000 × 1000m2

Number of nodes 300

Common node communication radius 50m

Heterogeneous node communication radius 60m

VSink 5m/s

Initial energy of common node 1 J

Initial energy of heterogeneous node 2 J

Eelec 50 nJ/bit

Efs 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

l 4,000 bits

d0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef s/Emp

q
= 87m
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Figure 3: Continued.
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5.3. Data Collection

5.3.1. Intracluster data collection. Step 1: After the cluster
head node of each cluster is successfully selected, the cluster
head broadcasts information such as its ID number, loca-
tion, and remaining energy within its maximum propaga-
tion radius.

Step 2: After the nodes receive the information from
cluster head, they record the information.

Step 3: The member nodes perform data transmission
according to the divided clusters. The cluster head node uses
the TDMA strategy to allocate time slots for the nodes in the
cluster, and all ordinary nodes perform data transmission in
the allocated time slots.
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Figure 3: Comparison of mobile sink path planning for 24 nodes.
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Figure 4: Comparison of mobile sink path planning for 32 nodes.
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5.3.2. Mobile Sink to Collect Data. The cluster head node
processes the received data and then forwards it to the base
station to complete the data collection of heterogeneous
WSNs.

6. Algorithm Comparison and
Performance Analysis

This paper compares four data collection strategies, which
are the random walk method, the movement strategy of
the PSO algorithm, the movement strategy of the PIO algo-
rithm, and the PSO-PIO algorithm. In the mobile strategy,
four algorithms are compared. In the experiment, the num-
ber of populations are 30, the iterations are 50, and the best
and average values of 30 independent runs were used as the
final test results. The population size of the pigeon colony
algorithm is 30, the number of iterations of the map and
compass operator is 40, the number of iterations of the com-
pass operator is 10, and the factor of the map and compass is
0.2. The parameter settings of the heterogeneous wireless
sensor network are shown in Table 1.

6.1. Comparison of Mobile Path Planning. In order to visu-
ally see the movement process of the mobile sink node of
heterogeneous WSNs, this paper describes its movement
path in detail and gives the movement paths of two different
network architectures with 24 resident points and 32 resi-
dent points, respectively. The moving path of the algorithm
is shown in Figures 3 and 4.

From the network simulation of 24 RPs in Figure 3, the
simulation area in this paper is large, and the total move-
ment path is relatively long, so the movement path planning
strategies of the four algorithms are relatively long. Among
them, in the movement mode of random walk, its moving

path is disordered, and the path is the longest. Particle
swarm optimization is a little better than random move-
ment; it has less chaotic movement. Compared with random
movement and the PSO algorithm, the PIO algorithm has a
relatively shorter movement path, and the strategy of the
movement path is relatively better, but it is not the optimal
one.

Figure 4 shows the mobility of 32 resident nodes, which
can be compared by path planning. Due to the large scope of
simulation in this paper, there are many RPs. The relative
effects of the proposed four algorithms are not the best, but
from the perspective of the four current literature methods,
this paper proposes its moving path compared with the other
three methods. Obviously shorter, the strategy is better.

6.2. Comparison of Network Energy Consumption. The
energy consumption comparison of the four algorithms is
shown in Figure 5. The RWmethod in the figure is an abbre-
viation for the random walk method.

From the perspective of the growth rate of the network,
the method of random movement consumes the most energy.
The PIO algorithm optimization by PSO algorithm has the
smallest network energy consumption, and the smaller the
growth rate, the lowest network energy consumption.

Moreover, we add a comparison of the three-dimensional
energy consumption of the algorithms, as shown in Figure 6.

Similarly, through the energy consumption comparison
of the three-dimensional network, it can be seen that the
energy consumption of this paper is the smallest.

6.3. Comparison of the Number of Packets Received by Sink.
The comparison of the number of packets collected by the
four algorithms is shown in Figure 7.
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Figure 5: Comparison of network energy consumption.
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Figure 6: Continued.
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Figure 6: Comparison of 3D network energy consumption.
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The number of received data packets for the four algo-
rithms is the same, and as the simulation progresses, the
gap gradually emerges. The number of datagrams collected
by random walk gradually decreases. With the progress of
the simulation, the network energy consumption of random
walk is relatively large, resulting in the death of some nodes,
resulting in a small number of data packets accepted by the
sink. The number of received packets of the other three types

is not much different. The improved PIO algorithm pro-
posed in this paper receives the most packets, but compared
with the PSO algorithm and the basic PIO algorithm, the
difference is not so obvious.

6.4. Comparison of the Number of Cluster Head Nodes. The
comparison of the number of cluster head nodes is shown
in Figure 8.
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Figure 7: Comparison of the number of packets received by the sink.
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Figure 8: Comparison of the number of cluster head nodes.
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With the simulation progresses, the number of cluster
head nodes in the random walk movement method fluc-
tuates greatly. The number of cluster head nodes gradu-
ally decreased and finally dropped to 10. The number

of cluster head nodes of the other three intelligent opti-
mization algorithms is not much different, and the num-
ber of cluster head nodes is relatively balanced, with little
difference.
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Figure 9: Comparison of network load balancing.
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Figure 10: Comparison of network transmission delays.
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6.5. Comparison of Network Load Balance. The calculation
formula of network load balancing is in reference [5].
According to the calculation in reference [5], we can obtain
the network load balancing performance of the four algo-
rithms. Figure 9 shows the simulation results.

From the comparison of network load balance in
Figure 9, it can be seen that in the first 25 times of polling,
the network load balance of the four methods has little dif-
ference. After 25 times of polling, the network load balance
of the random walk method is sharp. The main reason is that
the network energy consumption of the random walk
method is too large, the energy of the nodes is exhausted
in a large area, and its load balance fluctuates greatly. The
other three methods are relatively balanced.

6.6. Comparison of Network Transmission Delay. The trans-
mission delay measures the real-time performance of differ-
ent data collection methods by the transmission time of
successfully received data packets. The calculation formula
of network transmission delay is in reference [5]. According
to the calculation of reference [5], we can obtain the network
transmission delay of four algorithms. The network delays of
the three algorithms are shown in Figure 10.

At the beginning of the network transmission delay, the
network delay is long, mainly because the algorithm needs to
perform a lot of operations at the beginning, and it takes
some calculation time to find the optimal moving path. As
the iterative operation of the intelligent optimization algo-
rithm progresses, it gradually gains an advantage in finding
the optimal path, and gradually finds a relatively optimal
path plan, so that the transmission time is gradually short-
ened. From the perspective of the transmission delay of the

entire network, the random walk method takes the longest
time, the basic PIO algorithm has a longer delay, and the
PSO algorithm has a shorter transmission delay. The PSO-
PIO algorithm has the shortest transmission delay. The main
benefit is that the path it calculates is optimal, so the trans-
mission delay is the shortest.

6.7. Network Connectivity Comparison. The network con-
nectivity generally adopts the method of continuous motion
discretization to calculate the network connectivity. The cal-
culation formula of network connectivity is in reference [5].
The network connectivity comparison is shown in Figure 11.

The connectivity of the network is an important indica-
tor to be considered in the data collection process, which
directly affects the working stability and reliability of hetero-
geneous WSNs. From the comparison of network connectiv-
ity in Figure 11, except for the huge fluctuation of random
walk, the network connectivity of the other three algorithms
is relatively good. The PSO-PIO algorithm has the best mov-
ing path planning, and its network connectivity performance
is also the best. In this way, the phenomenon of data conges-
tion and large area packet loss that is easy to occur in the
data transmission process is avoided, and the stability of
the network operation is improved.

7. Conclusions

In this paper, an efficient data collection method based on
path optimization is proposed in heterogeneous WSNs for
Internet of things. Aiming at the path problem of mobile
sinks in heterogeneous WSNs, a path optimization strategy
based on the PSO-PIO algorithm t is proposed. The PSO-
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Figure 11: Comparison of network connectivity.
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PIO algorithm considers the network energy consumption,
data transmission delay, and network work efficiency when
collecting data when selecting the resident point, and uses
the PSO algorithm to select some nodes as the resident
point, and then constructs the optimal mobile path. Com-
pared with the PSO and PIO algorithms, the algorithm can
ensure the balance of energy consumption, effectively reduce
the transmission delay, and greatly prolong the network life.
In addition, the algorithm can overcome the fatal impact of
unreliable links on multihop data collection and ensure the
algorithm’s energy-saving and efficient data collection in
the actual environment.

The current work does not consider the reliability and
data redundancy in the process of data transmission. The
next step is to further improve the efficiency of heteroge-
neous WSNs data collection and the reliability of the net-
work, expand the mobile path of multiple sink and achieve
the goal of multiple sink to complete data collection together.
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