文章编号:1671-6833(2019)04-0008-07

基于多学习多目标鸽群优化的动态环境经济调度

闫 李,李 超,柴旭朝,瞿博阳

(中原工学院 电子信息学院 河南 郑州 450007)

摘 要:针对电力系统动态环境经济调度(DEED)问题 提出了一种基于多学习策略的多目标鸽群优化 (MLMPIO)算法.在多学习策略中 种群个体可以向外部存档集中的多个全局最优位置以及个体的历史 最优位置进行学习 进而保持种群的多样性和全局搜索能力,避免陷入早熟收敛.引入了小概率变异扰 动机制 进一步增强种群的多样性.为提升算法的运行效率,采用容量自适应变化的外部存档集来存储 当前 Pareto 最优解集.为验证所提算法的性能 将 MLMPIO 应用于 10 机组电力系统的 DEED 问题求解. 仿真结果证明了 MLMPIO 算法解决此类问题的可行性和有效性.

关键词:环境经济调度;多目标优化; 鸽群优化; 多学习; 小概率变异 中图分类号: TM734 文献标志码: A **doi**: 10. 13705/j.issn.1671-6833. 2019.04. 023

0 引言

近年来,为综合考虑电力系统运行的经济效 益和污染排放问题,并同时兼顾不同调度周期之 间的相互影响,动态环境经济调度(dynamic economic emission dispatch,DEED)得到了众多研究 者的青睐^[1-4]. DEED 兼顾了总调度周期内污染 排放和发电成本这两个相互竞争的目标,在满足 包括机组平衡约束、爬坡速率约束等多个等式和 不等式约束的前提下,通过分时段调配各个机组 的出力大小,实现这两个目标的同时最小化.显 然,DEED 是一种更实用、更符合实际短期调度需 求的模型,但这也使得 DEED 问题更加难以求解. 在综合考虑上述因素的前提下,DEED 问题成为 一个典型的高维度、强耦合、非线性和非凸的多目 标优化问题(multi-objective optimization problem, MOP).

目前,依据所用优化算法的不同,对于多目标 DEED 问题的求解,大致可分为两类:基于单目标 优化算法的求解方法和基于多目标优化算法的求 解方法.基于单目标优化算法的求解利用约束条 件法^[5]或权重系数法^[6-7]等将多目标 DEED 问题 转化为单目标问题,以降低求解难度.但该方法 无法在单次运行中为决策者提供多而优的选择方 案.基于多目标优化算法的求解将 DEED 问题当 作一个真正的 MOP,应用启发式算法对两个目标 进行同时优化.目前已经有文献报道的该类算法 包括 NSGA-II^[3]、改进的 NSGA-II^[8]、改进的自 适应多目标差分算法(MAMODE)^[4]、改进的自 适应多目标差分算法(MAMODE)^[4]、改进的基 于差分进化的混合化学反应算法(HCRO)^[9]、改 进的细菌觅食算法^[10]以及群搜索优化算法^[11]等. 然而,针对复杂的 DEED 问题,设计出更优的优化 算法进一步改进其调度性能,将会是 DEED 领域 一个持续的研究重点.

鸽 群 优 化 (pigeon-inspired optimization , PIO)^[12]算法是 Duan 等提出的一种新型仿生群 体智能优化算法,通过模拟鸽群归巢过程的特殊 导航行为,设计出地图和指南针算子以及地标算 子来分阶段指导鸽群个体的飞行.目前,PIO 已成 功应用于无人机紧密编队协同控制^[13]、舰载机控 制器设计^[14]、直流无刷电机参数设计^[15]等单目 标优化问题的求解. 然而,对于 MOP 的求解,PIO 还很少涉及. 2015 年,Qiu 等^[16]提出了基于帕累 托排序机制和合并算子的多目标鸽群优化算法

- 基金项目:国家自然科学基金资助项目(61673404,61873292);河南省高等学校重点科研项目(19A120014);河南省 高校创新人才项目(16HASTIT033);中国纺织工业联合会科技指导性项目计划(2018104);河南省科技攻 关项目(182102210128);河南省高等学校青年骨干教师培养计划项目(2018GGJS104)
- 通信作者: 瞿博阳(1984—), ,男, 河南武陟人, 中原工学院教授, 博士, 主要从事进化计算、机器学习等方向的研究, E-mail: quboyang@zut.edu.cn.

收稿日期: 2018-11-16;修订日期: 2019-05-06

(multi-objective pigeon-inspired optimization, MPIO). 但是 ,MPIO 在解决较为复杂的 MOP 时, 容易出现早熟收敛 ,陷入局部最优区域而无法获 得全局最优解集.

笔者提出了一种基于多学习策略的多目标鸽 群优化算法(multiple learning multi-objective pigeon-inspired optimization ,MLMPIO)对 DEED 问 题进行求解.在多学习策略中,鸽群个体向多个 全局最优位置进行学习,加强种群的社会学习能 力,从而增强种群的全局探索能力;多学习策略还 引入个体对历史最优位置的认知学习,以增强种 群的局部搜索能力.此外,MLMPIO采用容量自适 应调整的外部存档集来存储当前帕累托最优解 集,以提升算法的运行效率,并引入小概率变异扰 动机制,进一步增强种群的多样性.为验证所提 算法求解 DEED 问题的有效性,笔者采用 10 机组 电力系统进行算例研究.

1 DEED 数学模型

本节首先对 DEED 的目标和约束进行描述, 从而建立起多目标 DEED 的数学模型.

1.1 目标函数

(1)燃料费用.在考虑发电机组阀点效应的前提下,每台机组的燃料成本函数可由一个正弦函数和一个二次函数之和构成.因此,在所有调度周期内 N 台机组的总燃料费用可表达为:

$$f_{1} = \sum_{i=1}^{T} \sum_{i=1}^{N} \{ a_{i} + b_{i}P_{ii} + c_{i}P_{ii}^{2} + | d_{i}\sin[e_{i}(P_{i}^{\min} - P_{ii})] \} \}.$$

式中: *T* 代表调度周期的个数; $a_i imes b_i imes c_i imes d_i$ 和 e_i 分 别为第 *i* 台发电机的燃料费用系数; P_{ii} 是第 *i* 台 机组在调度周期 *t* 的有功出力; P_i^{\min} 是机组 *i* 的最 小出力.

(2) 污染排放.系统污染排放量的目标函数可 表达为:

$$f_{2} = \sum_{i=1}^{I} \sum_{i=1}^{N} \left[\alpha_{i} + \beta_{i} P_{ii} + \gamma_{i} \left(P_{ii} \right)^{2} + \eta_{i} \exp(\delta_{i} P_{ii}) \right]$$
(2)

式中: $\alpha_i \times \beta_i \times \gamma_i \times \eta_i \times \delta_i$ 是机组 *i* 的污染气体排放 系数.

1.2 约束

(1) 功率平衡约束.功率平衡约束为等式约束:

$$\sum_{i=1}^{N} P_{it} = P_{Dt} + P_{Lt} \ t \in T , \qquad (3)$$

式中: P_{Dt}和 P_{Lt}分别代表第 t 个调度周期内的负

荷和网损大小. 网损 P₁₁可通过 B 系数法求得:

$$\begin{split} P_{\text{LL}} &= \sum_{i=1}^{N} \sum_{j=1}^{N} P_{ii} B_{ij} P_{ji} + \sum_{i=1}^{N} P_{ii} B_{i0} + B_{00} \ t \in T \text{, (4)} \\ \vec{x} \mathbf{r} : B_{ij} \ B_{i0} \ B_{00} & \neq \mathbf{0} \\ B_{00} & = \mathbf{0} \\ B_{00} & \neq \mathbf{0} \\ B_{00} & = \mathbf{0} \\ B_{00} &$$

(2) 机组出力约束.

 $P_i^{\min} \leq P_{ii} \leq P_i^{\max}$ $i \in N t \in T$, (5) 式中: $P_i^{\min} \prod P_i^{\max}$ 分别代表机组i的最小出力和最大出力.

(3) 机组出力爬坡约束.

$$\begin{cases} P_{ii} - P_{i(i-1)} \leq U_{Ri}; \\ P_{i(i-1)} - P_{ii} \leq D_{Ri}, \end{cases} i \in N \ t \in T, \quad (6)$$

式中: *U*_{Ri}和 *D*_{Ri} 分别代表机组 *i* 出力的上升及下降爬坡速率.

1.3 数学模型

基于以上分析, DEED 问题可转换为带有约 束的多目标优化问题,其数学模型为:

$$\begin{cases} \min & [f_1(P) \ f_2(P) \]; \\ \text{s.t.} & g_i(P) = 0 \ i = 1 \ 2 \ \cdots \ p; \\ & h_j(P) \ \leqslant 0 \ j = 1 \ 2 \ \cdots \ q \ , \end{cases}$$
(7)

式中: *p* 和 *q* 分别为等式和不等式约束的数量.

对于多目标 DEED 问题而言,在满足所有等 式和不等式约束的条件下,使得燃料费用 f₁ 和污 染排放 f₂ 这两个相互矛盾的目标同时实现最小 化,进而得到全部发电机组在所有调度周期内的 最优调度方案.

2 MLMPIO 算法

2.1 MPIO 算法

(1)

PIO^[12] 是一种模拟自然界中鸽群归巢行为的 新型群体智能优化算法.在初始进化阶段,鸽群依 赖于地图和指南针算子进行导航;在旅程中期,导 航工具切换为地标算子,重新评估飞行路线并进行 修正.该算法具有理论简单、收敛速度快等特点,但 标准 PIO 主要适用于单目标问题.因此,为解决多 目标优化问题,Qiu 等^[16]提出了基于 Pareto 排序机 制和合并算子的多目标鸽群优化算法(MPIO).

(1) Pareto 排序机制.Pareto 排序机制由非支 配排序算子和拥挤距离算子两部分构成. 首先, 依据个体间的支配关系,利用快速非支配排序^[17] 将鸽群个体划分为不等的非支配等级,其中位于 第一等级的个体构成了当前种群的非支配解集. 然后,利用拥挤距离算子计算不同非支配等级中 个体间的拥挤距离,并依据拥挤距离的大小对个 体再次进行排序. 在两个算子的操作完成后,鸽 群个体依据其非支配等级的不同被划入不同的集 合,同时集合中的个体依据拥挤距离的大小按降 序排列. Pareto 排序机制的流程如图 1 所示.

图 1 Pareto 排序过程 Fig.1 Process of Pareto sorting

如图 1 所示, Pareto 排序完成后,当前种群的 非支配解集被存入外部存档集;同时,具有最大非 支配等级且拥挤距离最小的后 N_{dec}个个体被当作 劣等鸽剔除.

(2) 合并算子.MPIO 将地图和指南针算子以 及地标算子进行融合 得到一个新的合并算子 进 而利用该算子对鸽群个体进行速度和位置更新. 合并算子的具体形式如下:

$$\begin{cases} N_{\rm p} = N_{\rm p} - N_{\rm dec}; \\ V_{i}(t) = V_{i}(t-1) \cdot e^{-R \times t} , + rand_{1} \cdot tr \cdot \\ (1 - \log_{gm} t) \cdot (\mathbf{x}_{\rm g} - \mathbf{x}_{i}(t-1)) + \\ rand_{2} \cdot tr \cdot (\log_{gm} t) \cdot (\mathbf{x}_{\rm c} - \mathbf{x}_{i}(t-1)); \\ \mathbf{x}_{i}(t) = \mathbf{x}_{i}(t-1) + V_{i}(t) \quad i = 1, \dots, N_{p}, \end{cases}$$

$$(8)$$

式中: N_p 和 N_{dec} 分别代表 t 次迭代后的种群数量 和每代需剔除的个体数量; gm 代表最大迭代次 数; V_i 代表 x_i 的速度; R 是地图和指南针因子; tr表示过渡因子; x_g 表示当前种群的全局最优位 置; x_c 代表上一代非支配解集的中心位置,其计算 公式如下:

$$\mathbf{x}_{c} = \frac{\sum_{j=1}^{n} S_{1j}^{x}}{n}$$
, (9)

式中 ,*S*₁; 代表上一代非支配解集中第 *j* 个个体的 位置; *n* 代表该非支配解集的大小.

- 2.2 基于多学习策略的多目标鸽群优化算法 (MLMPIO)
 - (1) 多学习策略.如式(8) 所示 在 MPIO 的种

群搜索过程中,鸽群个体同时向全局最优个体 x_g 和非支配解集的中心位置 x_g 学习. 在社会学习方 面,MPIO 通过随机选择的方式从外部存档集中 选择一个个体作为全局最优个体 x_g,进而利用该 个体引导所有个体的移动搜索. 该方法虽然能够 增强 MPIO 的收敛速度,但是,若所选择的全局最 优个体处于局部最优区域或远离全局最优区域, 就可能导致种群陷入局部最优,停止向全局最优 解进化. 此外,MPIO 的引导个体 x_g 和 x_g 均是从 全局角度考虑而设计的引导个体,种群个体缺乏 对自身的认知学习以及对局部区域的搜索和 开发.

为解决上述问题,笔者在 MPIO 中引入多学 习策略,对个体的速度与位置更新公式进行改进. 改进后的更新公式为:

$$\begin{cases} N_{p} = N_{p} - N_{dec}; \\ V_{i}(t) = V_{i}(t-1) \cdot e^{-R \times t} + tr \cdot (1 - \log_{gm} t) \cdot \\ [rand_{1} \cdot (\mathbf{x}_{g,i} - \mathbf{x}_{i}(t-1)) + rand_{2} \cdot \\ (\mathbf{x}_{p,i} - \mathbf{x}_{i}(t-1))] + tr \cdot (\log_{gm} t) \cdot \\ rand_{3} \cdot (\mathbf{x}_{c} - \mathbf{x}_{i}(t-1)); \\ \mathbf{x}_{i}(t) = \mathbf{x}_{i}(t-1) + V_{i}(t) \quad i = 1, \dots, N_{p}. \end{cases}$$

$$(10)$$

式中: $x_{g,i}$ 是个体 x_i 对应的全局最优个体. 在对个体 x_i 进行位置更新前,首先从外部存档集中随机选择两个非支配个体作为该个体所对应的全局最优个体的备选集,然后选择其中拥挤距离较大的个体作为 x_i 的全局最优个体 $x_{g,i}$. 在该策略作用下,整个种群的进化由多个全局最优个体进行引导,种群中的个体可以向不同的全局最优位置进行学习. 该策略能够保持种群的多样性和全局探索能力,避免早熟收敛. 式(10)中, $x_{p,i}$ 表示个体 x_i 的历史最优位置. $x_{p,i}$ 的引入能够增强鸽群个体对自身历史信息的认知学习,从而改善种群的局部搜索能力,帮助算法跳出局部最优. 因此,个体认知学习的引入能够增强算法的局部开发能力,改进 PIO 求解复杂优化问题的性能. 对于 $x_{p,i}$ 的更新,笔者采用如下方法:

步骤1 使用 x_i 的初始值来初始化 x_{p_i} ;

步骤 2 根据式(10) 更新 x_i;

步骤 3 如果 $x_i < x_{p,i}$,则 $x_{p,i} = x_i$;反之 $x_{p,i}$ 保持不变;如果 x_i 和 $x_{p,i}$ 互不支配,则 $x_{p,i} = x_i$ 的概 率为 0. 5.

(2)小概率变异扰动.为进一步增强种群的多 样性种群个体位置更新完成后对个体进行小概 率变异扰动. 该机制使得个体 x_i 以一定概率 P_m 在以 x_i 为中心 ,半径为 r 的区域内进行随机变异. 变异形式如下所示:

$$\mathbf{x}_{i} = \begin{cases} \mathbf{x}_{i} + random(r, -r) & \text{if } rand \leq P_{m}; \\ \mathbf{x}_{i} & \text{otherwise.} \end{cases}$$
(11)

(3)容量自适应变化的外部存档集.在 MPIO 算法中,采用外部存档集的方式来存储已经找到 的 Pareto 最优解,并随机从该外部存档集中选取 全局最优位置.但随着迭代次数的增加,外部存 档集中最优解的数量也会越来越多,这会降低算 法的运行速度,影响算法的运行效率.因此,笔者 采用自适应变化机制来动态调整每次迭代中外部 存档集的容量,该动态调整机制为:

$$EA(t) = EA_{\min} + [EA_{\max} - EA_{\min} \cdot (t/gm)],$$
(12)

式中: *EA*(*t*) 表示第*t*代的外部存档集大小; *EA*_{min}和*EA*_{max}分别表示外部存档集的最小容量和最大容量.

3 MLMPIO 在 DEED 中的应用

3.1 种群初始化

对于多目标 DEED 问题,每个机组在每个调 度周期内的功率输出都应该作为种群个体的决策 变量,因此,在 MLMPIO 中,种群大小为 N_p,其中 每个个体包含 NT 维决策变量,表达形式如下:

$$\boldsymbol{X} = \{ \boldsymbol{x}_{1} \ \boldsymbol{x}_{2} \ \cdots \ \boldsymbol{x}_{N_{p}} \}.$$
(13)
$$\boldsymbol{x}_{i} = \begin{bmatrix} P_{11} \ P_{12} \ \cdots \ P_{1T} \\ P_{21} \ P_{22} \ \cdots \ P_{2T} \\ \vdots \ \vdots \ \vdots \ \vdots \\ P_{N1} \ P_{N2} \ \cdots \ P_{NT} \end{bmatrix} ,$$
(14)

式中: *N* 是发电机组的数量; *T* 是调度周期的个数; *P*_{ij}根据式(5) 在其出力上下限之间随机产生.

3.2 算法流程

MLMPIO 求解多目标 DEED 问题的流程如下 所示:

步骤 1 初始化种群,包括种群大小 N_{p} ,位置 x_{i} ,速度 V_{i} ,个体历史最优 $x_{p,i}$,迭代次数t.

步骤2 初始化一个外部存档集 $A = \emptyset$,利用 Pareto 排序机制找到初始种群的非支配解集,并 存入A.

步骤 3 从 A 中分别为每个个体选择合适的 全局最优 x_{g_i},并根据式(10)更新其速度 V_i和位 置 x_i.

步骤4 依据式(11)对更新后的个体进行小

概率变异扰动.

步骤 5 更新 x_{p_i}.

步骤 6 找到当前种群的非支配解集,并将其 合并存入外部存档集 A;利用帕累托排序机制对外 部档案集 A 进行排序,保留前 EA(t) [大小由式 (12)求解]个个体作为当前代的 Pareto 最优解集.

步骤 7 令 *t* = *t* + 1 加果 *t* < *T*,返回步骤 3; 否则 停止运行 输出 Pareto 最优解集.

需要注意的是,笔者对于 DEED 中等式和不 等式约束的处理采用动态启发式约束处理方法; 此外,对于最优折中解的计算采用基于模糊集理 论的折中解求解方法,具体可见文献[18].

4 实验结果与分析

4.1 系统描述与参数设置

笔者采用 10 机组电力系统验证 MLMPIO 算 法的有效性,调度周期为 24 h 以 1 h 为间隔分为 24 个调度时段. 机组参数、分时段负荷以及网损 系数见文献 [3]. 所有仿真实验均采用 Matlab R2014b 编程实现,测试环境为 i7-6 700 K 处理 器(4.00 GHz), 16 GB 内存, Windows 64 位 Windows 7 操作系统.

MLMPIO 算法的参数设置如表 1 所示. 需要 说明的是,由于算法在每次迭代更新后均会剔除 N_{dec}个劣等个体,所以 MLMPIO 的种群大小和最 大迭代次数设置为 298 和 100,其他参数均可依 据算法性能进行调整,表 1 中所列参数为多次试 验后得到的最优选择. 此外,MPIO 算法所选参数 与 MLMPIO 一致.

表1 本文算法参数 Tab.1 Optimal parameters for MLMPIO

$N_{ m dec}$	R	tr	p_m	r	$N_{ m p}$	gm
2	0.05	3	0.4	0.3	298	100

4.2 结果分析

图 2 是 MLMPIO 与 MPIO 所获得的 Pareto 前 沿对比图 ,从图 2 中可以看出 ,MPIO 所求得的帕 累托前沿分布密集且局限于较窄的区域 ,这表明 MPIO 算法在求解时可能陷入局部最优区域. 而 MLMPIO 所求得的帕累托前沿分布更加广泛也更 加均匀 ,且各目标的极端解也更好 ,可为决策者提 供更优的调度方案. 此外 ,图 2 的结果对比也验 证了 MLMPIO 算法中多学习策略及小概率变异 扰动的有效性.

表 2 列出了 MLMPIO 与 MPIO 所获得的最优 目标 值 和 最 优 折 中 解. 从 表 2 中 可 以 看 出 ,

MLMPIO 所求得的经济目标最优值和环境目标最 优值均优于 MPIO. 在最优折中解方面 ,MPIO 的 燃料费用目标值(2.509 541 × 10⁶ \$)仅比 MLMPIO(2.516 345×10⁶ \$)低0.27% ,而在污染 排放方面 ,MPIO(3.280 98×10⁵ lb)却比 MLMPIO (3.003 67×10⁵ lb)要多 8.45%. 综上可知 ,笔者 提出的 MLMPIO 算法相比于基本 MPIO 来说 ,表 现出更优的全局搜索能力和计算精度 ,同时也展 现出更好的调度性能.

表 2 MLMPIO 与 MPIO 实验结果对比

Fab.2	Comparison of experiment results between
	MLMPIO and MPIO

方法	目标	燃料费用/ (10 ⁶ \$)	污染排放/ (10 ⁵ lb)		
	经济最优	2. 481 502	3. 187 46		
MLMPIO	环境最优	2. 578 485	2.942 17		
	最优折中解	2.516 345	3.003 67		
	经济最优	2. 499 769	3. 343 84		
MPIO	环境最优	2. 513 881	3. 271 41		
	最优折中解	2.509 541	3. 280 98		

表 3 将 MLMPIO 的调度结果与近年来文献 中采用相同机组模型的其他 5 种算法的结果进行 对比.分析表 3 中的结果可知 在经济目标和环境 目标的最优解(极端解)方面,相比于 IBFA、 RCGA/NSGA-II、MAMODE 以及 CRO 4 种算法, MLMPIO 的结果(2.481 502×10⁶ \$ 和 2.942 17× 10⁵ lb)都是最优的; 与 HCRO 算法相比,其经济 目标最优值(2.479 931×10⁶ \$)仅比 MLMPIO (2.481 502×10⁶ \$)低 0.06%,但在环境目标方 面,HCRO(2.984 56×10⁵ lb) 却比 MLMPIO (2.942 17×10⁵ lb) 要高 1.42%.综合两个目标的 最优解情况可知,MLMPIO 的性能要优于 HCRO. 在最优折中解方面,MLMPIO 要优于 RCGA/ NSGA-II 和 CRO; IBFA 的污染排放目标值最小, 但其燃料费用(2.517 117×10⁶ \$) 要高于 MLMPIO(2.516 345×10⁶ \$); MAMODE 得到的燃 料费用目标值最小,但其污染排放目标值比 MLMPIO 高 2.375×10³ lb.综上,与其他 5 种算法 相比,MLMPIO 无论在极端解还是折中解方面均 表现出较好的优化性能.

表 3 不同算法的结果对比 Tab.3 Results comparison of different methods

	目标	燃料费用/ (10 ⁶ \$)	污染排放/ (10 ⁵ lb)
	经济最优	2.481 502	3.187 46
MLMPIO	环境最优	2.578 485	2.942 17
	最优折中解	2.516 345	3.003 67
	经济最优	2. 481 733	3. 275 02
IBFA ^[10]	环境最优	2.614 342	2.958 33
	最优折中解	2.517 117	2.990 37
	经济最优	2.516 800	3.174 00
KUGA/	环境最优	2.656 300	3.041 20
NSGA− <u>II</u>	最优折中解	2.522 600	3.099 40
	经济最优	2. 492 451	3. 151 19
MAMODE ^[4]	环境最优	2.581 621	2.952 44
	最优折中解	2.514 113	3.027 42
	经济最优	2. 481 613	3. 212 14
CRO ^[9]	环境最优	2.519 305	2.986 64
	最优折中解	2.517 821	3.019 42
	经济最优	2. 479 931	3. 213 47
HCRO ^[9]	环境最优	2.520 067	2.984 56
	最优折中解	2.517 076	2.990 66

表 4 给出了 MLMPIO 所求得的最优折中解, 涵盖了每个机组在全部调度时段的出力大小,同 时给出了不同时段内系统的网损和负荷大小.通 过计算可得 机组在各调度时段的总出力均等于 该时段系统的网损与负荷之和,这表明 MLMPIO 求得的最优折中解满足式(3)所示的功率平衡约 束,同时,各机组调度出力大小也满足机组出力约 束和爬坡约束.这进一步验证了笔者所提出 MLMPIO 算法在求解 DEED 问题时的可行性和有 效性.

u .) FЛ		各时段机组出力/MW								总出力/	网损/	负荷/	
ዛባ ትጆ	机组1	机组2	机组 3	机组4	机组5	机组6	机组7	机组8	机组9	机组10	MW	MW MW	MW
1	150.042	135.042	106. 515	85.733	105. 101	127.609	113.631	97.120	79.938	54.990	1 055.72	19.7209	1 036
2	150.063	135. 218	104. 983	104.864	131. 985	135. 168	119.052	116. 162	79.978	54.988	1 132.46	22.4608	1 110
3	152.665	146. 897	144. 293	135.802	174. 834	147.200	129.980	119. 987	79.990	54.990	1 286.64	28.6374	1 258
4	169. 392	163. 284	173. 293	174.653	216. 326	159.954	129. 994	119. 994	79.993	54. 993	1 441.87	35.874 8	1 406
5	173. 569	171.002	195. 367	211.606	223.404	159.968	129.969	119.968	79.971	54.972	1 519.80	39.7964	1 480
6	203.053	196. 305	243. 933	245.719	242.746	159. 999	129.998	119. 998	79.998	54. 998	1 676.75	48.745 8	1 628
7	216. 117	216. 883	273. 899	260.876	242.905	159. 999	129.999	119. 999	79.998	54. 998	1 755.67	53.6749	1 702
8	229. 992	252. 311	283. 398	281.331	242. 998	159. 999	129.999	119. 999	79.999	54. 999	1 835.02	59.024 6	1 776
9	280. 148	304.039	322. 638	299. 923	243.000	160.000	130.000	120.000	80.000	55.000	1 994.75	70.7479	1 924
10	328. 327	345. 195	340.000	300.000	243.000	160.000	130.000	120.000	80.000	55.000	2 101.52	79.5224	2 022
11	381.739	384. 103	340.000	300.000	243.000	160.000	130.000	120.000	80.000	55.000	2 193.84	87.8419	2 106
12	396. 135	418.262	340.000	300.000	243.000	160.000	130.000	120.000	80.000	55.000	2 242.40	92. 397 4	2 150
13	351.732	376.646	340.000	300.000	243.000	160.000	130.000	120.000	80.000	55.000	2 156.38	84.378 5	2 072
14	298.067	307.087	303.724	298. 223	242. 988	159. 989	129. 989	119. 989	79.988	54.988	1 995.03	71.029 9	1 924
15	240. 890	245.993	281.767	278.504	242. 986	159.990	129.990	119.990	79.990	54.990	1 835.09	59.088 6	1 776
16	187. 892	176. 929	236. 594	232.914	218.838	159.983	129. 985	119. 985	79.986	54.982	1 598.09	44.088 8	1 554
17	176.650	163.264	192. 224	214. 592	228.065	159.996	129.996	119. 996	79.996	54.996	1 519.78	39.775 1	1 480
18	196. 951	203.795	253.417	241.509	236.086	159. 999	129.999	119. 999	79.999	54. 999	1 676.75	48.752 5	1 628
19	241.296	262. 574	271. 233	272. 172	242. 998	159. 999	129.999	119. 999	79.999	54. 998	1 835.27	59.267 6	1 776
20	307.557	320. 785	330. 987	299.658	243.000	160.000	130.000	120.000	80.000	55.000	2 046.99	74.9889	1 972
21	286. 500	296. 816	323. 586	299.846	243.000	160.000	130.000	120.000	80.000	55.000	1 994.75	70.7487	1 924
22	207.989	218.156	245.035	251.851	209. 173	159.960	129.961	119.961	79.963	54.963	1 677.01	49.0106	1 628
23	157.404	142. 186	165. 231	201.945	159. 342	153. 813	129.618	119.755	79.837	54.841	1 363.97	31.973 3	1 332
24	150.379	138.790	120. 168	152.343	122.613	143.902	127.660	118. 548	79.987	54.989	1 209.38	25.378 1	1 184

表 4 MLMPIO 的最优折中解 Tab.4 Best compromise solution obtained by MLMPIO

5 结论

笔者以电力系统在一定调度周期内的总燃 料费用和污染排放为目标,建立了电力系统多 目标 DEED 模型,并在模型中计及了火电机组 的阈点效应、机组爬坡速率约束、网络损耗以及 负荷变化.为求解复杂的多目标 DEED 问题,提 出了一种基于多学习策略的多目标鸽群优化算 法,该算法通过一种新的多学习策略来增强种 群的多样性和全局搜索能力,避免陷入局部最 优;同时,引入小概率变异扰动机制来进一步增 强种群的多样性;采用容量自适应变化的外部 存档集来存储当前 Pareto 最优解集,提升算法 的运行效率.为验证所提算法的有效性,以10 机组电力系统的 DEED 问题为算例进行求解, 并与 MPIO 及其他调度方案进行对比分析.实验 结果表明,MLMPIO 是一种可行且有效的多目标 DEED 问题求解算法,同其他算法相比,表现出 更优的全局搜索能力及寻优能力,能够为决策 者提供更多更优的选择.

参考文献:

- [1] QU B Y, ZHU Y S, JIAO Y C, et al. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems [J]. Swarm and evolutionary computation, 2018, 38: 1–11.
- [2] 肖俊明,周谦,瞿博阳,等.多目标进化算法及其在 电力环境经济调度中的应用综述[J].郑州大学学 报(工学版),2016,37(2):1-9.
- [3] BASU M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II [J]. International journal of electrical power & energy systems, 2008, 30(2): 140-149.
- [4] JIANG X W, ZHOU J Z, WANG H, et al. Dynamic environmental economic dispatch using multiobjective differential evolution algorithm with expanded double selection and adaptive random restart [J]. International journal of electrical power & energy systems, 2013, 49: 399-407.
- [5] SONG Y H , YU I K. Dynamic load dispatch with voltage security and environmental constraints [J]. Electric power systems research , 1997 , 43(1): 53-60.

- [6] BASU M. Particle swarm optimization based goal-attainment method for dynamic economic emission dispatch [J]. Electric power components and systems , 2006, 34(9): 1015–1025.
- [7] BASU M. Dynamic economic emission dispatch using evolutionary programming and fuzzy satisfying method
 [J]. International journal of emerging electric power systems, 2007, 8(4): 1-15.
- [8] ZHU Z J, WANG J, BALOCH M H. Dynamic economic emission dispatch using modified NSGA- II [J]. International transactions on electrical energy systems, 2016, 26(12): 2684-2698.
- [9] ROY P K, BHUI S. A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch [J]. International transactions on electrical energy systems, 2016, 26(1): 49–78.
- [10] PANDIT N ,TRIPATHI A ,TAPASWI S ,et al. An improved bacterial foraging algorithm for combined static/ dynamic environmental economic dispatch [J]. Applied soft computing ,2012 ,12(11) : 3500-3513.
- [11] GUO C X , ZHAN J P , WU Q H. Dynamic economic emission dispatch based on group search optimizer with multiple producers [J]. Electric power systems research , 2012 , 86: 8–16.
- [12] DUAN H B, QIAO P X. Pigeon inspired optimization: a new swarm intelligence optimizer for air robot path planning [J]. International journal of intelli-

gent computing and cybernetics , 2014 , 7(1): 24-37.

- [13] 段海滨,邱华鑫,范彦铭.基于捕食逃逸鸽群优化的无人机紧密编队协同控制[J].中国科学(技术科学),2015,45(6):559-572.
- [14] DOU R , DUAN H B. Pigeon-inspired optimization approach to model prediction control for unmanned air vehicles [J]. Aircraft engineering and aerospace technology , 2016 , 88(1): 108-116.
- [15] XU X B, DENG Y M. UAV power component DC brushless motor design with merging adjacent-disturb– ances and integrated-dispatching pigeon-inspired opti– mization [J]. IEEE transactions on magnetics, 2018, 54(8):1–7.
- [16] QIU H X, DUAN H B. Multi objective pigeoninspired optimization for brushless direct current motor parameter design [J]. Science china technological sciences, 2015, 58(11): 1915–1923.
- [17] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
- [18] ZHU Y S, WANG J, QU B Y. Multi-objective economic emission dispatch considering wind power using evolutionary algorithm based on decomposition [J]. Electrical power & energy systems, 2014, 63: 434 -445.

Dynamic Economic Emission Dispatch Based on Multiple Learning Multi-objective Pigeon-inspired Optimization

YAN Li , LI Chao , CHAI Xuzhao , QU Boyang

(School of Electronic and Information Engineering , Zhongyuan University of Technology , Zhengzhou 450007 , China)

Abstract: For solving the dynamic economic emission dispatch problem (DEED), a multiple learning based multi-objective pigeon-inspired optimization (MLMPIO) algorithm was proposed in this paper. In the proposed multiple learning strategy, individuals of the population were allowed to learn from multiple global best positions of the external archive, and from the personal historical best positions simultaneously. This learning strategy could enable the preservation of the population's diversity and global search ability to avoid premature convergence. Meanwhile, small probability mutation was introduced to enhance the swarm diversity further. The external archive with adaptive changing capacity was used to store the current Pareto optimal solutions. The DEED problem of the IEEE 10-generator power system was used to verify the performance of the proposed method.

Key words: economic emission dispatch; multi-objective optimization; pigeon-inspired optimization; multiple learning; small probability mutation