第61卷 第6期

doi:10.6043/j.issn.0438-0479.202204057

基于混合自适应变异鸽群优化的飞机等效系统拟配

张兆宇1,段海滨1.2*,罗德林3

(1.北京航空航天大学自动化科学与电气工程学院,北京 100083;2. 鹏城实验室,广东 深圳 518000;3. 厦门大学航空航天学院,福建 厦门 361102)

摘要:现代高阶增稳飞机因模型阶次升高致使飞行品质难以分析,一般参考美军标提出的低阶等效系统(low-order equivalent system,LOES)概念以及一系列标准,在频域上辨识得到 LOES 后开展飞行品质分析,从而避免因模态耦合严重造成按传统方法无法分析计算的弊端.故本文提出了一种基于混合自适应变异机制的改进鸽群优化算法(mixed adaptive mutation pigeon-inspired optimization,MAMPIO),用于在频域上计算 LOES.试验部分在飞机本体开环模型和 增稳控制模型的纵向通道进行双拟配仿真计算,并同经典鸽群优化算法及用于高增稳飞机双拟配的混沌差分进化算法 对比,通过绘制失配度收敛曲线及拟配频段的频率响应和频率失配曲线,证明在拟配频率段本文算法具有更高的拟配 精度.在横航向通道上,由于 LOES 模型参数较多,使用 MAMPIO 在拟配精度方面会超出失配包络线.故针对横航向通 道的等效拟配,提出一种先采用 MAMPIO 粗略搜索一组可靠的参数,再采用最小二乘法以 MAMPIO 的搜索结果作为 迭代初值进一步获取 LOES 参数的拟配方法.包线内五组典型状态点处的仿真结果表明,此横航向拟配方法能够克服 最小二乘法的初值敏感性,同时显著提升滚转、侧滑通道的拟配精度.

关键词:等效拟配;鸽群优化;自适应;变异;飞行品质

中图分类号:V 212.12 文献标志码:A

电传操纵系统(fly-by-wire system,FBWS)的广 泛应用极大地提高了飞机的飞行稳定性,使得现代飞 机的模型阶次高达数十阶[1].通常现代战斗机的控制 系统配备有多种补偿器、滤波器和传感器,纵向侧向 运动耦合剧烈,长短周期模态之间以及横航向滚转螺 旋等模态之间不易区分,且横向通道内容易发生耦 合^[1].美国有人给出驾驶飞机飞行品质规范 MIL-F-8785C,提出一系列基于 LOES(low-order equivalent system,LOES)开展评估的飞行品质标准.应用这些 标准可以避免因模态耦合而剧增的计算复杂程度,为 高阶增稳飞机控制回路设计提供工程意义上的参考. 美军标在频率域上对等效拟配精度提出了失配度和 失配包络线的要求[2].前者用一个与频响函数有关的 代价函数在拟配频段内选取典型频率点计算拟配精 度,而后者以包络线的形式在所选频段给出了整体的 频响偏差要求.由此看来,研究复杂系统模型的低阶

文章编号:0438-0479(2022)06-0933-10

等效拟配方法,是完善高阶增稳飞机的飞行品质、评估体系和推动飞行控制系统发展的关键.

自等效系统的概念提出以来,最小二乘法(least square,LS)、极大似然法和模式搜索法等传统的寻优 算法被用在等效系统的辨识中^[3].由于流程简单、迁 移便捷,LS在工程中应用十分广泛,但同时存在算法 对初值设定依赖度高、不易收敛的缺陷^[3].Kamali 等^[4]开发了非线性LS,用在飞行仿真器中辨识飞行品 质参数.Shafer^[5]使用极大似然法估计F-8C高增稳飞 机的低阶等效系统.周堃等^[6]使用LS工具箱对某型 运输机的纵向通道进行拟配,并利用带宽准则、C*准 则等典型飞行品质标准进行评价.王水英等^[7]就拟合 过程的初值选择、频率响应计算方式以及时延环节的 线性近似等阐述LS求解等效系统的若干技巧.

由于缺乏 LOES 的参数先验知识,传统优化方法 不易收敛的局限性造成算法初值选取的工作量繁重.

- 通信作者:hbduan@buaa.edu.cn
- **引文格式**:张兆宇,段海滨,罗德林.基于混合自适应变异鸽群优化的飞机等效系统拟配[J].厦门大学学报(自然科学版),2022, 61(6):933-942.
- Citation: ZHANG Z Y, DUAN H B, LUO D L. Equivalent fitting technique for aircraft via mixed adaptive mutation pigeominspired optimization[J]. J Xiamen Univ Nat Sci, 2022, 61(6):933-942. (in Chinese)

收稿日期:2022-04-30 录用日期:2022-10-05

基金项目:科技创新 2030-"新一代人工智能"重大项目(2018AAA0102403);国家自然科学基金(91948203,U20B2071,T2121003)

故基于智能优化算法的若干等效拟配技术相继被提出,用于频域拟配,可避免其结果陷入局部最优.章萌等^[8]将 Tent 混沌映射机制引入差分进化算法,对高 阶飞机俯仰和过载通道实现频域双拟配.田宏峰等^[9] 设计了一种具有抗干扰能力的平均差分进化算法,在 时域拟配俯仰通道和在含有不同程度的噪声输入下 系统响应更佳.段效聪等^[10]针对人机闭环系统模型, 从克隆、变异、选择等自适应操作对克隆选择算法进 行改进,以常规布局飞机为算例,完成巡航点的长短 周期特性的等效系统拟配.

鸽群优化(pigeom-inspired optimization, PIO)算 法是一种模拟鸽群借助太阳、地磁场和地标等导航工 具归巢过程的仿生智能优化方法,通过两个不同阶段 的导航机制,增强全局寻优能力和局部勘探能力^[11]. 因其优秀的搜索性能和收敛能力,近年来在控制系统 设计[12]、目标搜索[13]及参数辨识[14]等研究领域有广 泛的应用. Deng 等^[12]利用改进的 PIO 求解频域等效 系统参数,分析着舰控制系统的操纵性能;唐悦等[15] 提出一种空天飞行器等效拟配方案,先使用 LS 的拟 配结果作为优化初值,进而使用 PIO 辨识等效系统参 数,提高了单独使用 LS 的拟配精度.由于美军标中对 等效系统的计算有明确要求,纵向上要同时对俯仰和 过载采取双拟配,横航向同时对滚转和侧滑双拟 配^[15]. 前文综述的工作有些仅针对纵向俯仰通道展开 研究,另一些研究的飞机构型特殊且飞行状态考虑单 一,或仅仅在结果中呈现了某一增稳通道的等效拟配 结果.本文中将设计满足纵向与横航向双拟配的算 法,并在本体模型和含增稳控制回路的闭环飞机模型 上开展试验,避免上述各类局限性.

为了增强低阶等效系统的拟配精度,提高算法对 不同高阶增稳模型的普适性,本文对基本 PIO 算法进 行了改进,增加了鸽群内部在速度更新方面的随机交 互学习,设计了一种地图与指南针算子的自适应调整 策略,并受到差分进化算法启发,将衍生出的变异选 择机制加入鸽子位置更新,提出混合自适应变异鸽群 优化算法(mixed adaptive mutation pigeon-Inspired optimization,MAMPIO).本文以装有电传操纵系统 的常规布局飞机为研究对象,对纵向通道的开环、闭 环模型进行俯仰和过载双拟配仿真计算.为证明本文 方法的有效性,将 MAMPIO 与经典 PIO 算法以及文 献[8]中的混沌差分进化(chaotic differential evolution, CDE)算法进行试验对比,通过失配度大小和失配包 络线量化分析其拟配效果.横航向通道低阶等效系统 无法在试验频率段全部满足失配包络要求.故本文采用 MAMPIO 得到拟配结果后作为迭代初值,进一步采用 LS 搜索到失配度较低的低阶等效系统参数.在 飞行包线内选取一些典型状态点进行等效拟配 仿真.

1 问题描述与系统建模

本文中的评估对象包括飞机本体的纵航向模型、 横航向模型,以及分别以俯仰角速率和滚转-航向速率 为指令信号的增稳控制系统(control augmentation system,CAS).本文选取 F-16"战隼"战斗机低保真度 模型作为飞机算例,即在仿真分析时忽略前缘襟翼的 舵回路效应.依据气动数据库的插值有效范围确定飞行 包线,给出速度和高度约束.高度范围满足:1524 m 12 192 m,速度范围满足:91.44 m/s $\leq V \leq 274.32$ m/s^[16].

飞机的纵向和横航向的运动模态分离可利用小 扰动理论实现,用状态空间表达为:

$$\begin{cases} \boldsymbol{X}_{\text{lon}} = A_{\text{lon}} \boldsymbol{X}_{\text{lon}} + B_{\text{lon}} \boldsymbol{U}_{\text{ldn}}, \\ \boldsymbol{Z}_{\text{lon}} = C_{\text{lon}} \boldsymbol{X}_{\text{lon}} + D_{\text{lon}} \boldsymbol{U}_{\text{lon}}, \\ \boldsymbol{X}_{\text{lat}} = A_{\text{lat}} \boldsymbol{X}_{\text{lat}} + B_{\text{lat}} \boldsymbol{U}_{\text{lat}}, \\ \boldsymbol{Z}_{\text{lat}} = C_{\text{lat}} \boldsymbol{X}_{\text{lat}} + B_{\text{lat}} \boldsymbol{U}_{\text{lat}}, \\ \boldsymbol{Z}_{\text{lat}} = C_{\text{lat}} \boldsymbol{X}_{\text{lat}} + D_{\text{lat}} \boldsymbol{U}_{\text{lat}}, \\ \boldsymbol{Z}_{\text{lon}} = \begin{bmatrix} \boldsymbol{\theta} & \boldsymbol{V}_{t} & \boldsymbol{\alpha} & \boldsymbol{q} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{Z}_{\text{lon}} = \begin{bmatrix} \boldsymbol{\theta} & \boldsymbol{V}_{t} & \boldsymbol{\alpha} & \boldsymbol{q} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{U}_{\text{lon}} = \begin{bmatrix} \boldsymbol{\delta} & \boldsymbol{V}_{t} & \boldsymbol{\alpha} & \boldsymbol{q} & \boldsymbol{n}_{z} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{X}_{\text{lat}} = \begin{bmatrix} \boldsymbol{\phi} & \boldsymbol{\beta} & \boldsymbol{p} & \boldsymbol{r} \end{bmatrix}^{\mathrm{T}}, \end{cases}$$
(2)

 $egin{aligned} & oldsymbol{Z}_{ ext{lat}} = egin{bmatrix} \phi & eta & p & r & n_y \end{bmatrix}^{ ext{T}}, \ & oldsymbol{U}_{ ext{lat}} = egin{bmatrix} \delta_{ ext{a}} & \delta_{ ext{r}} \end{bmatrix}^{ ext{T}}. \end{aligned}$

其中:纵向的状态输出量中,俯仰角 θ ,空速 V_{ι} ,迎角 α ,俯仰角速率q,法向过载 n_{s} ;横航向状态输出量中, 滚转角 ϕ ,侧滑角 β ,滚转角速率p,偏航角速率r;纵向 输入中, δ_{T} 为油门量, δ_{e} 为升降舵量;横航向输入中, δ_{a} 为副翼舵量, δ_{r} 式为方向舵量.

考虑飞机本体小扰动模型,高阶系统的传递函 数可以直接由式(1)所示的纵向或横航向状态方程 计算得到.另外值得一提的是,本文还以带增稳控制 回路的飞机高阶闭环系统作为等效拟配计算对象. 将舵机动力学的非线性模型、相位滤波器和用以补 偿调整稳定性的比例积分控制器、传感器等部分线 性化处理,以获得能够作为拟配过程参考的高阶 模型.

另外,研究纵向通道时,升降舵作动器的动力学

特性可简化视为一个含系统时滞的一阶惯性环节.此 外, 舵回路的控制面铰链处通常存在有间隙非线性环 节,且由于传感器与增稳控制回路中数字滤波器的存 在会产生时滞特性^[17].同理, 对横航向通道中的副翼 和方向舵可建立类似的非线性模型.

作动器环节建模如图 1 所示,控制器输出的舵面 指令信号分别经过一阶惯性动态环节以及包括间隙、 时滞、饱和限幅等多个非线性环节后,输入状态空间 模型.

为研究拟配算法在高阶增稳飞机模型的表现,本 文以飞机算例开环本体模型为基础,分别为纵向和横 航向通道设计了含有前馈控制器、阻尼器、传感器及 滤波环节的增稳控制闭环模型,如图 2(a)所示.由于 评价纵向飞行品质大多是针对短周期运动进行双拟 配,故图 2(a)中考虑飞机短周期运动作为状态方程的 闭环控制模型,其输入为俯仰杆力.与纵向增稳模型 不同的是,评价横航向飞行品质需要对副翼到滚转角 以及方向舵到侧滑角两通道的传递函数特性展开双 拟配,模型输入包括侧向杆力与脚蹬量,故本文设计 的横航向增稳控制闭环结构如图 2(b)所示.图 2(a) 中,F_{lon}、F_{lat}、F_{ped}分别表示俯仰、横向、脚蹬通道的杆 力输入,δ_{ec}代表升降舱指令偏度,u_a和u_r分别代表滚 转和偏航通道输出的控制量.图 1 所示的作动器模型 描述了图 2(a)的升降舵回路和图 2(b)的副翼与方向 舵回路中的详细结构组成.

2 MAMPIO

经典 PIO 算法将鸽群的归巢路径搜索行为模拟 为两个群体智能行为阶段,将待优化的参数向量视为 鸽子在地图中的位置坐标.第一阶段模拟太阳与地磁

场导航,完成基于指南针算子和全局最优信息的位置 更新;待接近鸽群目标位置后,第二阶段则根据鸽群 的健康度计算鸽群中心并设为地标,迭代一轮淘汰半 数掉队的鸽子,剩余具有位置优势的鸽子继续搜索 目标^[11].

2.1 传统 PIO 算法

1) 地图与指南针算子

设置鸽子位置坐标的维度为 D,第 i 只鸽子在第 t 轮 迭代的 D 维位置坐标表示为 $\mathbf{X}_i = \begin{bmatrix} x_{i1}^t & x_{i2}^t & \cdots & x_{iD}^t \end{bmatrix}^T$, 相应迭代该个体的速度用 $\mathbf{V}_i^t = \begin{bmatrix} v_{i1}^t & v_{i2}^t & \cdots & v_{iD}^t \end{bmatrix}^T$ 来表示,个体编号 $i = 1, 2, \dots, N$. 第一阶段中第 i 只鸽 子在第 t 轮迭代时位置和速度的更新公式可以表示为:

 $\begin{cases} \mathbf{V}_{i}^{t} = \mathbf{V}_{i}^{t-1} \times \mathrm{e}^{-\mathbf{R}t} + \mathrm{rand}_{i}^{t} \times (\mathbf{X}_{\mathrm{gbest}}^{t-1} - \mathbf{X}_{i}^{t-1}), \\ \mathbf{X}_{i}^{t} = \mathbf{X}_{i}^{t-1} + \mathbf{V}_{i}^{t}, \end{cases}$ (3)

其中:R 为地图与指南针算子, X_{gbest} 表示第 t 轮迭代时全局最优位置,第一阶段的最大迭代代数为 N_{cl}^{max} , rand; 为范围位于[0,1]间随机数向量.

2) 地标算子

在第二阶段鸽群按照由群体健康度在每轮迭代 计算群体的中心位置作为地标算子,鸽群中距离目标 位置较近(即适应度较高)的子群会被保留,参考地标 向目标位置飞行.第 t 轮迭代鸽群中第 i 只鸽子的健 康度为:

$$\begin{cases} F_{\text{fitness}}(\boldsymbol{X}_{i}^{t}) = F(\boldsymbol{X}_{i}^{t}), F = F_{\text{max}}, \\ F_{\text{fitness}}(\boldsymbol{X}_{i}^{t}) = 1/(F(\boldsymbol{X}_{i}^{t}) + \varepsilon), F = F_{\text{min}}, \end{cases}$$
(4)

其中: $F(X_i)$ 表示位置为 X_i 的鸽子的适应度函数值, F = F_{max} 表示求解最大值优化, 而 $F = F_{\text{min}}$ 表示求解 最小值优化问题, 最大迭代次数 N_{c2}^{max} .

2.2 MAMPIO

以上两节中介绍了经典 PIO 算法在两个算子阶段 作用下的迭代计算公式,该算法在处理高维度优化问题 时,易陷入局部最优解.为改善局部勘探能力,本文介绍 两种对经典 PIO 的改进策略,并将改进的 MAMPIO 算 法用以解决高阶增稳系统的等效拟配问题.

1) 自适应权重调控算子

本节中提出两项作用于速度更新方程的自适应 调控算子,随迭代动态调节搜索速度.

经典 PIO 算法在式(3)速度更新中主要依赖于指 南针算子的搜索能力.首先,使用 tanh 函数构造第一 项调控因子 χ 以更新地图和指南针算子.*R* 的指数项 持续增加从而调控鸽群的运动速度.指南针算子随迭 代轮次 *t* 更新为:

http://jxmu.xmu.edu.cn

$$\begin{cases}
\mu = -2 + 4 \times t / N_{cl}^{\max}, \\
\chi = 10 \frac{e^{\mu} - e^{-\mu}}{e^{\mu} + e^{-\mu}}, \\
R' = \frac{\pi}{b + e^{-\chi}},
\end{cases}$$
(5)

其中:μ在[-2,2]范围内随迭代次数增加,保证 tanh 函数范围位于[-1,1]且单调递增,从而控制了 χ 在 [-10,10]内的有界单调增加属性.当迭代次数 t 增 加,鸽群逐渐靠近目标时,R'的分母呈指数递增,通过 设定偏置项 b 使得 R'从一逼近零的极小值增加到经 典 PIO 中的原设定值 R.

其次,将经典 PIO 中对局部最优解趋近项的随机 权重更改为惯性自适应权重为:

$$k_{1}^{t} = (k_{\max} + k_{\min})/2 + \left[(k_{\max} - k_{\min})/2\right] \times$$
$$\tanh(-\left[N_{c1}^{\max}/50\right] + 2 \times \left[N_{c1}^{\max}/50\right] \times$$
$$(N_{c1}^{\max} - t)/N_{c1}^{\max}).$$
(6)

本文中取 $k_{max} = 0.95, k_{min} = 0.4.$ 式(6)中的自适应权 重因子 $k'_1 \in [k_{min}, k_{max}]$ 且单调递减.

引人上述两种自适应调控算子,动态更新指南针 算子 R' 以及权重因子 k'₁,再引入位置随机差分变异 项用来激活鸽群中速度多样性,增大跳出局部最优的 可能.改进后的速度更新公式为:

 $\mathbf{V}_{i}^{t} = \mathbf{V}_{i}^{t-1} \times e^{-\mathbf{R}'t} + k_{1}^{t} \times (\mathbf{X}_{\text{gbest}}^{t-1} - \mathbf{X}_{i}^{t-1}) +$

 $1/[1 + e^{1-(t/N_{c1}^{max})^2}] \times (X_{r1}^{r-1} - X_{r2}^{r-1}),$ (7) 其中:地图和指南针算子更换为自适应调控的 R'算 子,r1 和 r2 为两个在 1 和种群数量 N 间的随机整数, 满足 r1 ≠ r2 ≠ i.

2) 位置变异

在地图与指南针算子的每轮迭代中,在速度更新 后加入对鸽群中每个个体的变异选择机制.由鸽子原 位置叠加上差分位置变异项和平均速度变异项变异 产生新个体,与原个体的适应度相比较选较优者,以 增加搜索过程的多样性.

差分位置变异项计算了种群中随机个体同当前 全局最优个体 Gbest'间的距离,平均速度变异项基于 当前鸽群速度平均值,采用柯西变异因子进行变异, 对第 *i* 只鸽子变异得到的新个体位置可以表示为

$$\begin{cases} \mathbf{X}_{i_{\text{new}}}^{t} = \mathbf{X}_{i}^{t} + \text{rand} 2_{i}^{t} \times (\mathbf{X}_{best}^{t-1} - \mathbf{X}_{r3}^{t}) + \\ Cauthy_{i}^{t} \times \widetilde{\mathbf{V}}^{t}, \\ \widetilde{\mathbf{V}}^{t} = \sum_{i} \mathbf{V}_{i}^{t} / N, \end{cases}$$

$$(8)$$

 $[\operatorname{Cauthy}_{i}^{t} = \tan[\pi \times (\operatorname{rand}_{i}^{t} - 1/2)],$

其中:rand3^{*i*} 为随机整数满足 1 \leq rand3^{*i*} $\neq i \neq$ Gbest^{*i*} \leq N, Gbest^{*i*} 为第 *t* 轮迭代处全局最优解个体编号.

3 基于 MAMPIO 的等效拟配方法

本节中将介绍把以上的自适应调整机制和变异 机制加入整个的 MAMPIO 算法流程,用来拟配低阶 等效系统的完整方法.

飞机的低阶等效系统是指,在与高阶 CAS 受到同 样的外界激励作用时,在飞行品质标准规定的时域或 频域范围内,具有近似响应特性的可供等效分析的系 统.由于高阶增稳飞机的各通道耦合严重,故很难根 据传统的飞行品质评估方式通过区分不同运动模态 来确定对应模态特性.军标中则推荐工程上通过频域 辨识来确定低阶等效系统,并运用低阶系统的分析方 法来评估飞机的品质.

由美军标 MIL-STD-1797A 可知,在频域上 拟配 低阶等效系统,主要思路为:设高阶系统在频率点 ω 处的幅值响应和相角分别为 $G_{\text{High}}(i\omega)$ 与 $\Phi_{\text{High}}(i\omega)$,低 阶等效系统的幅值和相角为 $G_{\text{Low}}(i\omega)$ 及 $\Phi_{\text{Low}}(i\omega)$.定 义失配度 M 如下:

$$M = \sum_{i=1}^{20} [G_{\text{High}}(i\omega_i) - G_{\text{Low}}(i\omega_i)]^2 + K \sum_{i=1}^{20} [\Phi_{\text{High}}(i\omega_i) - \Phi_{\text{Low}}(i\omega_i)]^2.$$
(9)

进行频域低阶等效拟配,要从 0.1~10 rad/s 按对数 分段等间距取 20 个频率点,获得频率响应值,并按式 (9)计算失配度,式中 K 值普遍取 0.017 5.等效拟配 的目标是尽可能减小失配度,使高低阶系统在频率域 上具有较高的近似程度,目的是应用一些为等效系统 设计的飞行品质标准,静态评估高阶 CAS 能否提升飞 机在平飞、盘旋以及执行机动时的飞行品质.

本文对纵向高阶飞机增稳模型的俯仰和过载两 通道采用双拟配,低阶系统模型为^[2]:

$$\begin{cases} \frac{\dot{\theta}(s)}{\delta_{\rm e}(s)} = \frac{K_{\theta}\left(s + \frac{1}{T_{\theta^2}}\right)}{s^2 + 2\zeta_{\rm nsp}\omega_{\rm nsp}s + \omega_{\rm nsp}{}^2} {\rm e}^{-\tau_{\theta}s}, \\ \frac{n_z(s)}{\delta_{\rm e}(s)} = \frac{K_n}{s^2 + 2\zeta_{\rm nsp}\omega_{\rm nsp}s + \omega_{\rm nsp}{}^2} {\rm e}^{-\tau_n s}. \end{cases}$$
(10)

使用 PIO 拟配时,可选择适应度函数如式(11),为 CAS 模型在 0.1~10 rad/s 频率范围内按式(9)计算 俯仰角速率通道与法向过载通道的失配度之和. 对纵 向高阶 CAS 模型双拟配所得参数向量包含两通道的 7 个特征参数 $[K_{\theta} \quad T_{\theta 2} \quad \zeta_{nsp} \quad \omega_{nsp} \quad \tau_{\theta} \quad K_{n} \quad \tau_{n}]^{T},$ 纵向总失配度的适应度函数可表示为:

$$K_{\rm lon} = M_{\dot{\theta}} + M_{n_z}. \tag{11}$$

对横航向的滚转和侧滑通道双拟配时,同样使用

两通道的失配度之和构造适应度函数,军标中给出横 航向的低阶系统模型可写为^[2]:

$$\begin{cases} \frac{\phi(s)}{\delta_{a}(s)} = \\ \frac{K_{\phi}(s^{2} + 2\zeta_{\phi}\omega_{\phi}s + \omega_{\phi}^{2})}{(s^{2} + 2\zeta_{d}\omega_{d}s + \omega_{d}^{2})(s + \frac{1}{T_{R}})(s + \frac{1}{T_{s}})}e^{-\tau_{\phi}s}, \\ \frac{\beta(s)}{\delta_{r}(s)} = \\ \frac{K_{\beta}\left(s + \frac{1}{T_{\beta^{1}}}\right)\left(s + \frac{1}{T_{\beta^{2}}}\right)\left(s + \frac{1}{T_{\beta^{3}}}\right)}{(s^{2} + 2\zeta_{d}\omega_{d}s + \omega_{d}^{2})\left(s + \frac{1}{T_{R}}\right)\left(s + \frac{1}{T_{s}}\right)}e^{-\tau_{\beta}s}. \end{cases}$$

$$(12)$$

横航向模型中期望拟配所得的参数向量为:

$$\begin{bmatrix} T_s & T_R & \zeta_d & \omega_d & K_\phi & \zeta_\phi & \omega_\phi & \tau_\phi & K_\beta & T_{\beta 1} \\ T_{\beta 2} & T_{\beta 3} & \tau_\beta \end{bmatrix}^{\mathrm{T}}.$$

在等效拟配中,将待拟配的参数向量映射为鸽子的位置信息,MAMPIO 拟配步骤为:

Step 1:由于缺乏等效系统参数的先验信息,故给 定限制范围随机初始化鸽群中 N 只鸽子的初始位置 X_i^0 (i = 1, 2, ..., N),用个体位置代表 LOES 的待求参 数向量,据此计算全部鸽子的初始适应度,并比较出 具有最低适应度的个体位置作为初始全局最优解 X_{gbest}^0 ;

Step 2:启动地图与指南针算子,根据式(5)、(6) 计算自适应算子并更新指南针算子,根据式(7)更新 鸽群速度,根据式(3)更新位置;

Step 3:更新全局最优个体和最优适应度值,根据 式(8)采取位置变异,若 $F(X_{inew}^{t}) < F(X_{i}^{t})$ 那么用 X_{inew}^{t} 替代第 i 只鸽子位置;

Step 4:更新全局最优个体,若 $t \leq N_{d}^{max}$ 则返回 Step 2,否则迭代数 t 清零继续执行 Step 5;

Step 5: 启动地标算子,淘汰适应度较大的一半鸽子,更新鸽群位置,更新全局最优个体;

Step 6:若 $t \leq N_{a}^{\max}$ 则返回 Step 5,否则输出最优的系统参数.

4 仿真试验与分析

本文在 F-16 算例的飞行包线内选取 5 组状态点, 分别对纵向、横航向的本体模型、增稳控制闭环模型 共 4 种模型进行等效拟配算法的对比仿真试验,以证 明所提出算法的效果相较已有方法的优势.为了验证 所提出的拟配算法具有全包线内普适且优异的性能, 在以下状态点测试算法的拟配效果:① *H* = 2 000 m,

Ma = 0.7; (2) $H = 6\ 000\ \text{m}$, Ma = 0.8; (3) $H = 6\ 000\ \text{m}$, Ma = 1.0; (4) $H = 8\ 000\ \text{m}$, Ma = 1.2; (5) $H = 10\ 000\ \text{m}$, Ma = 1.4.

首先对纵向本体模型在上述 5 个状态点下依次进行等效拟配. 文献[8]介绍的 CDE 算法同样将变异机制 引入智能优化算法进行改进,用以解决飞机纵向通道的 双拟配问题,与本文应用场景类似. 故将本文提出的 MAMPIO 算法与 CDE 算法及未加入自适应变异策 略的经典 PIO^[12]对比,按文献[8]中取定 CDE 算法的 初值,并为 PIO 和 MAMPIO 设定种群参数和总迭代 次数为: N = 40, $N_{cl}^{max} = 360$, $N_{c2}^{max} = 40$, R = 0.3.

在选取的5组典型状态点下分别以相同的初始 参数进行仿真试验,得到纵向本体模型拟配结果和 失配度值,如表1所示.由于篇幅有限,在图3(a)、 (b)两图分别显示第①组和第④组状态飞机本体模型 双拟配试验的失配度代价函数变化曲线,可据此直观 了解各算法失配度变化过程,比较收敛和精度等算法 性能.

表 1 飞机纵向本体开环模型等效拟配结果

T.1. 1 E	4 (1441		- ſ	1 1: 1	· · · 1	
Tab. I Equivalen	t nitting	result	OI	Iongitudinal	open-loop	mode

组别									失配度		
	$K_{ heta}$	$T_{_{ heta 2}}$	$\zeta_{\rm nsp}$	$\omega_{ m nsp}$	$ au_ heta$	K_n	τ_n	PIO	CDE	MAMPIO	
1	22.263 2	0.728 2	0.666 2	2.798 7	0.026 0	12.908 7	0.000 4	253.48	266.64	35.93	
2	16.164 8	0.978 8	0.539 8	2.296 7	0.010 9	7.631 4	0	311.35	594.15	37.99	
3	25.685 3	0.841 1	0.530 5	2.839 2	0.016 4	17.649 9	0.000 3	335.08	433.29	20.27	
4	20.527 7	1.220 7	0.435 2	2.415 8	0.018 5	11.218 6	0.000 2	319.36	527.60	26.20	
5	17.715 0	1.561 4	0.355 6	2.200 2	0.002 4	8.724 5	0	157.79	517.88	27.51	

表1中5组状态点的最佳拟配参数为最终达到最低失配度值的方法辨识得到的低阶等效系统参数,在此处均为 MAMPIO 方法的计算结果,且其失配度值远低于另两种方法.另由图3可见,CDE 算法由于初始化存在 Tent 混沌映射,会发生初始种群的改变而重新计算全局历代最优,映射效果不佳时会发生图中最优适应度在起初几次迭代升高的情况.PIO 收敛速度尚可,但在各种测试条件下均更易陷入局部最优,造成最终失配度值偏高、精度偏低.而 MAMPIO 仅历约50次迭代可在引入变异因子的指南针算子作用下收敛到很低的失配度值,相较 CDE 和 PIO,在收敛速

度和变异寻优能力上具有显著的优势.

另外,考虑如图 2(a)所示框架中含 CAS 的飞机 纵向通道闭环模型作为研究算例,为 CDE、PIO 及 MAMPIO 3 种算法在 5 个状态组同上述开环模型仿 真给定相同的初始参数,仿真对比飞机增稳闭环模型 的双拟配结果.纵向增稳控制模型算例在 5 个仿真状 态下的最佳拟配参数及失配度如表 2 所示.以第①组 飞行状态的等效拟配结果为例,将高阶、低阶系统频 率响应作为对比,以直观地展现 3 种拟配方法在整个 拟配频段上的性能优劣,如图 4 所示.图 4 中(a)~(d) 4 张图分别展示了双拟配计算中俯仰、过载两通道的

http://jxmu.xmu.edu.cn

飞机纵向闭环增稳系统等效拟配结果

Tab. 2 Equivalent fitting result of longitudinal closed-loop CAS												
组别		最佳拟配参数								失配度		
	$K_ heta$	$T_{ heta_2}$	$\zeta_{\rm nsp}$	$\omega_{ m nsp}$	$ au_{ heta}$	K_n	τ_n	PIO	CDE	MAMPIO		
1	-44.387 0	0.705 1	1.465 4	5.959 8	0.012 0	-25.971 8	0	191.09	550.08	26.31		
2	-32.767 3	1.030 8	1.265 3	4.610 9	0.017 3	-14.690 8	0	181.09	577.93	50.85		
3	-43.173 6	0.8537	1.305 3	6.016 3	0	-29.361 3	0.000 2	170.23	83.56	29.54		
4	-49.9997	1.359 2	1.415 9	5.678 8	0.022 5	-26.1824	0	227.89	580.21	48.71		
5	-30.319 5	1.738 1	1.071 3	4.252 2	0.0017	-14.292 1	0.000 2	338.55	255.42	62.71		

图 4 第①组状态飞机纵向闭环增稳控制系统的拟配曲线 Fig. 4 Fitting curve of longitudinal closed-loop CAS system for group ①

高低阶系统幅频、相频特性响应曲线,(e)和(f)两张图 分别给出了两通道拟配频率段的各特征频率点的幅 频失配度在失配包络线中的位置.图中蓝色实线以及 浅红、浅蓝、浅黄虚线分别代表高阶系统频率响应以 及 CDE、PIO 和本文提出的 MAMPIO 算法双拟配所 得的低阶等效系统频率响应.

飞机的纵向增稳模型含控制系统以及作动器、传 感器模型的非线性特性,由于该模型并不具有良好的 小扰动特性,等效拟配相对困难.由图4结果可知, MAMPIO是3种算法中唯一能在等效拟配的全部频 段均位于失配包络线以内的算法.由于计算失配度时 对数等距取定频率点,在2~10 rad/s 的中高频率段 频率点间隔较宽,导致相邻频率点的频响特性变化相 对更大.故由图4(e)和(f)可见,CDE和PIO在中高频 率段超出失配包络线,而 MAMPIO在变异因子作用 下有效解决了该问题.综上,MAMPIO在纵向本体模 型和高阶增稳模型的拟配中均达到较高的精度和收 敛速度,且在飞行包线内选取的5个典型状态点的仿 真结果均可以作为本文所提出方法在纵向通道可行 性的有力佐证.

验证本文算法在横航向通道上的拟配效果,由于 横航向低阶等效系统含有 13 个未知参数,且横航向 的小扰动模型以及 CAS 相比纵向模型更复杂,计算 难度高.本文算法在低频段具有良好的频率拟合特 性,优于另两种算法;但因计算失配度函数的频率点 以对数间距取定,在中高频段采样频率点数低于低频 段,易出现失配度升高,故在多组状态点的仿真中采 用文中的 3 种算法时侧滑通道的高频段拟配效果 不佳.

为此,本文提出先使用 MAMPIO 初步辨识出一 组低阶系统参数,再将参数向量作为初值,进而使用 LS完成第二阶段的等效拟配.本文使用 MATLAB 官 方给出的系统辨识工具箱中@lsqnonlin(fun,x0,lb, ub)求解代价函数为式(9)形式的非线性 LS 拟合问 题,在函数形参中给定由横航向高阶、低阶系统模型 计算的失配度函数、与 MAMPIO 相同的参数边界限 幅以及由 MAMPIO 初步优化所得的参数初值,适合 解决本文以 LS 形式为优化函数的横航向等效拟配问

题^[18].本节提出的先后分别使用 MAMPIO 和 LS 的 组合拟配方法、MAMPIO-LS 组合拟配方法和另 3 种 纵向拟配中所对比算法在本文 5 组飞行状态仿真的 失配度结果如表 3 左侧 4 列所示.由于篇幅原因,选取 第③组状态,对比本节所提出 MAMPIO-LS 和 CDE、 PIO、MAMPIO 3 种算法在对横航向飞机本体模型拟 配效果曲线,如图 5 所示.图 5(a)~(d)分别展示了在 幅频和相频特性上滚转、侧滑两通道的 LEOS 与原高 阶系统频率响应的对比曲线. 仿真结果表明,单独使 用 MAMPIO 的拟配效果优于 CDE 和 PIO,但在侧滑 通道高频段拟配效果很差,而本节提出的组合算法的 失配度极低且在全部频段均位于失配包络线内. 可 见,此 MAMPIO-LS 的组合优化方法在横航向本体模 型上拟配效果良好.

表 3 飞机横航向模型等效拟配结果 Tab. 3 Equivalent fitting result of lateral directional model

组别 ——		开环本体标	闭环增稳模型失配度			
	PIO	CDE	MAMPIO	MAMPIO-LS	MAMPIO	MAMPIO-LS
1	528.62	517.39	473.18	8.86 $\times 10^{-5}$	759.20	0.005 2
2	757.80	673.53	657.12	1.79×10^{-5}	796.64	0.011 0
3	735.22	654.78	462.17	1.67×10^{-4}	635.58	0.000 9
4	677.66	801.75	574.10	1.39×10^{-5}	837.98	0.007 1
5	770.90	658.91	592.86	3.05 $\times 10^{-6}$	897.76	0.001 6

再对横航向 CAS 高阶增稳模型进行双拟配计算. 由于 PIO 和 CDE 在拟配横航向高阶增稳模型时失配 度很高,且收敛速度极慢,则仅对比 MAMPIO 和 MAMPIO-LS 两种算法的拟配效果,在文中的 5 个状 态点处计算收敛后的失配度结果如表 3 中右侧两列 所示.仍以第③组状态为例,比较在滚转、侧滑通道上 的频率特性如图 6 所示.由图 6 可见 MAMPIO 虽然 在滚转通道上效果较好,但侧滑通道的中高频段拟配 效果很差.这种现象仍是由于优化参数数量增加后, 变异因子对各个参数的作用并不明显,导致无法收敛 到最优值.而 MAMPIO-LS 算法仍旧在规定频段内均 位于失配包络中,证明了该方法在横航向增稳系统上 同样可靠.

5 结 论

本文提出了一种基于混合自适应变异机制的 PIO 算法,分别用于纵向、横航向的飞机本体模型与增稳 控制模型的等效拟配.将 MAMPIO 算法应用在飞机 纵向本体模型和增稳控制模型的双拟配试验中,在本 文所选的飞行包线内 5 个典型状态点处性能表现良 好,拟配精度显著高于另两种对比的优化方法.在横航 向通道的双拟配试验中单独应用 MAMPIO 在低频段 拟配良好,高频段效果不佳;本文进而设计了 MAMPIO 粗略搜索低阶系统参数,并作为 LS 初值继续迭代寻优

的两阶段拟配方法,在横航向的高阶增稳模型双拟配试 验中改善了侧滑通道高频段的拟配效果.

参考文献:

[1] HODGKINSON J. A history of low order equivalent systems

(a)~(d)为滚转通道频率特性失配曲线,(e)~(f)为侧滑通道频率特性失配曲线.

for aircraft handling qualities analysis and design[C] // AIAA Atmospheric Flight Mechanics Conference and Exhibit. Texas: AIAA, 2003: 1-13.

- United States Department of Denfense. Military standard, flying qualities of piloted aircraft: MIL-HDBK-1797A
 [S]. USA: United States Department of Defense, 2004.
- [3] MORELLI E. A. Low-order equivalent system identification for the Tu-144LL supersonic transport aircraft[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 354-362.
- [4] KAMALI C, ARCHANA H, VIJEESH T, etc. Real-time desktop flying qualities evaluation simulator[J]. Defence Science Journal, 2014, 64(1): 27-32.
- [5] SHAFER F M. Low order equivalent models of highly augmented aircraft determined from flight data using maximum likelihood estimation [C] // 6th Atmospheric Flight Mechanics Conference. MA:AIAA,1980:572-582.

- [6] 周堃,王立新,谭详升.放宽静稳定电传客机纵向短周期 品质评定方法[J].航空学报,2012,33(9):1606-1615.
- [7] 王水英,黄俊.基于 MatLab 的俯仰轴等效系统拟配及飞 行品质评价[J].飞机设计,2009,29(5):32-36.
- [8] 章萌,章卫国,孙勇,等. 基于混沌差分进化算法的飞机等 效系统 拟 配 研 究 [J]. 系 统 仿 真 学 报,2010,22(9): 2060-2064.
- [9] 田宏峰,薛源,徐浩军,等.平均差分进化算法在等效系统 拟配中的应用[J].空军工程大学学报(自然科学版), 2020,21(1):9-14.
- [10] 段效聪,徐浩军,王国智,等.自适应克隆选择算法在等 效系统拟配中的应用[J].空军工程大学学报(自然科学 版),2020,21(3):19-24.
- [11] 段海滨,邱华鑫.基于群体智能的无人机集群自主控制 [J].北京:科学出版社,2018:1-24.
- [12] DENG Y M, DUAN H B. Control parameter design for automatic carrier landing system via pigeon-inspired

optimization[J]. Nonlinear Dynamics, 2016, 85(1):97-106.

- [13] HUO M Z, DUAN H B. An adaptive mutant multiobjective pigeon-inspired optimization for unmanned aerial vehicle target search problem[J]. Control Theory and Applications, 2020, 37(3):584-591.
- [14] ZHANG D F, DUAN H B. Identification for a reentry vehicle via levy flight-based pigeon-inspired optimization
 [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018,232(4):626-637.
- [15] 唐悦,杨犇,刘燕斌,等.空天飞行器性能评估中的等效 拟配方法研究.战术导弹技术,2021,4:43-51.
- [16] KEVICZKY T, BALAS J G. Receding horizon control of an F-16 aircraft: a comparative study [J]. Control Engineering Practice, 2006, 14(9):1023-1033.
- [17] 聂雪媛,郑冠男,杨国伟.含间隙非线性机翼跨声速颤振时滞反馈控制[J].北京航空航天大学学报,2021,47
 (10):1980-1988.
- [18] 杨俊,张永,肖艳平.最小二乘法在飞机飞行品质评价中的应用[J].民航学报,2018,2(2):30-33.

Equivalent fitting technique for aircraft via mixed adaptive mutation pigeon-inspired optimization

ZHANG Zhaoyu¹, DUAN Haibin^{1,2*}, LUO Delin³

(1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China; 2. Peng Cheng Laboratory, Shenzhen 518000, China; 3. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China)

Abstract: Difficulties arise when the flight quality of modern high-ordered aircrafts with control augmentation systems (CAS) is analyzed due to the increase of the model order. The military standard of the United States proposes the concept of low-order equivalent system (LOES) and series of criterion, which requires engineers to perform LOES identification and evaluate the flight qualities. The drawback caused by strongly coupled flight models is avoided. Therefore, in this paper, a pigeon-inspired optimization method based on mixed adaptive mutation mechanism (MAMPIO) is proposed. This approach can handle equivalent fitting of LOES on frequency domains. Double-fitting simulations are carried out in the longitudinal channel of aircraft's open-loop model and closed-loop CAS model. The basic PIO and chaotic differential evolution algorithms are compared. The accuracy of the proposed method is demonstrated by analyzing evolutionary curves of mismatch function, frequency response curves and frequency response mismatching curves. In the lateral directional channel, fitting accuracy of MAMPIO exceeds mismatch envelope due to more unknown parameters. Therefore, a method is proposed, in which a reliable group of parameters is roughly searched by MAMPIO, then serves as the initial value of the least square method to obtain final parameters of LOES. Simulation results on five state points indicate that, the approach discussed above can overcome the sensitivity of initial value of the least square method. Moreover, the equivalent-fitting accuracy is elevated notably.

Keywords: equivalent fitting; pigeon-inspired optimization; self-adaptive; mutation; flying qualities

(责任编辑:汪 军)